Learning Social Integrity Constraints

Fabrizio Riguzzi University of Ferrara

Introduction

- A theory composed of social integrity constraint can be seen as a classifier
- It classifies an history as compliant or non-compliant
- Similar to the learning from interpretation setting of Inductive Logic Programming

Learning from Interpretation

- Aim: learning a classifier for logical interpretations
- Classifier: a set of disjunctive clauses
- Disjunctive clause $C = h_1 \lor h_2 \lor \ldots \lor h_n \leftarrow b_1, b_2, \ldots, b_m$
- $head(C) = \{h_1, h_2, \dots, h_n\}$
- $body(C) = \{b_1, b_2, \dots, b_m\}$
- Interpretation = set of ground atoms.

Learning from Interpretation

- Set of clauses as a classifier
 - an interpretation is positive if all the clauses are true in the interpretation
 - an interpretation is negative if there exists at least one clause that is false in it
- A clause *C* is true in an interpretation *I* if for all grounding substitutions θ of *C*: $I \models body(C)\theta \rightarrow head(C)\theta \cap I \neq \emptyset.$

Test of Truth of a Clause

- Range restricted clause C, finite interpretation I: run the query ? – body(C), not head(C) against a logic program containing I
- If $C = h_1 \lor h_2 \lor \ldots \lor h_n \leftarrow b_1, b_2, \ldots, b_m$ then the query is $? b_1, b_2, \ldots, b_m, not \ h_1, not \ h_2, \ldots, not \ h_n$
- If the query succeeds, C is false in I. If the query fails, C is true in I

Example

- $I = \{invitation(a), accept(a), blood_test(a), \\ invitation(b), refusal(b) \}$
- $C = accept(X) \lor refusal(X) \leftarrow invitation(X)$: the clause is true in *I* because the query $? - invitation(X), not \ accept(X), not \ refusal(X)$ fails
- $C = blood_test(X) \leftarrow invitation(X)$: the clause is false in *I* because the query ? - invitation(X), not $blood_test(X)$ succeeds with $\theta = \{X/b\}$.

Learning from Interpretations

Given

- a space of possible clausal theories \mathcal{H}
- a set P of interpretations
- \bullet a set N of interpretations
- **Find**: a clausal theory $H \in \mathcal{H}$ such that
- for all $p \in P$, H is true in p
- for all $n \in N$, H is false in n

Application to ICs Learning

- Interpretations=histories
- Clause theory=ICs

Example from guidelines discovery

- Each history (trace, guideline execution) is an interpretation
- Cervical cancer screening process
 {H(invitation, 1), H(papTest, 2), H(sendPapTestSample, 3),
 H(sendPapTestResult(neg), 4),
 H(sendNegativeLetter, 5) }
- clauses \rightarrow ICs

 $\mathbf{H}(invitation, T) \rightarrow$

 $\mathbf{E}(papTest,T1) \land T1 > T \lor \mathbf{E}(refusal,T2) \land T2 > T$

 $\mathbf{H}(sendPapTestResult(neg),T) \rightarrow \mathbf{EN}(papTest,T1) \land T1 > T$

Learning Algorithm

```
ICL [De Raedt, Van Laer, 95]
```

```
Learn(P, N, B)

H := \emptyset

repeat until best clause C not found or N is empty

find best clause C

if best clause C found then

add C to H

remove from N all interpretations that are false for C

return H
```

Find best clause

- Find best clause performs a beam search in the space of clauses ordered according to the θ-subsumption generality order
- Clause $C \theta$ -subsumes clause D is $\exists \theta$ such that $C\theta \subseteq D$
- if $D \theta$ -subsumes C than clause C is more general than clause D (is true in more interpretations)
- In particular if $D \subseteq C$ than clause C is more general than clause D (is true in more interpretations)

Example

$$C = accept(X) \lor refusal(X) \leftarrow invitation(X)$$

$$D = accept(X) \lor refusal(X) \leftarrow true$$

 $D = accept(X) \leftarrow invitation(X)$

Find best clause

- Find best clause starts from the most specific clause {} = false ← true and gradually generalizes it until all the positive interpretations are covered and some negative interpretations are ruled out
- Generalization is performed by adding literals to the clause (to the head or to the body)
- The literals that can be added are specified using the language bias
- Example:

 $false \leftarrow true \\ accept(X) \leftarrow true \\ accept(X) \leftarrow invitation(X) \\ accept(X) \lor refusal(X) \leftarrow invitation(X)$

ICs learning

- In order to learn ICs we must find a way to generalize them
- Adding a literal to the body makes the IC true in more histories

 $\mathbf{H}(invitation, T) \rightarrow \mathbf{E}(papTest, T1) \land T1 > T$

 $\mathbf{H}(invitation, T) \land \mathbf{H}(accept, T3) \rightarrow \mathbf{E}(papTes, T1) \land T1 > T$

Adding a disjunct to the head makes the IC true in more histories

 $\mathbf{H}(invitation, T) \land \mathbf{H}(accept, T3) \rightarrow$ $\mathbf{E}(papTes, T1) \land T1 > T \lor \mathbf{E}(refusal, T2) \land T2 > T$

Generalizing ICs

 Adding a conjunct to a disjunct with universal quantification (disjunct with EN) in the head generalizes the IC

$$\begin{split} \mathbf{H}(sendPapTestResult(neg),T) &\rightarrow \mathbf{EN}(papTest,T1) \\ \mathbf{H}(sendPapTestResult(neg),T) &\rightarrow \\ \mathbf{EN}(papTest,T1) \wedge T1 > T \end{split}$$

• Adding a conjunct to a disjunct with existential quantified variables (disjunct with E) in the head specializes the IC $H(invitation, T) \rightarrow E(papTest, T1) \lor E(refusal, T2)$ $H(invitation, T) \rightarrow$ $E(papTest, T1) \lor E(refusal, T2) \land T2 > T$

Generalization Operator

- add a literal to the body
- add a disjunct to the head composed of:
 - a single EN atom
 - an E atom followed by all the constraints allowed by the language bias for the disjunct
- add a constraint to a EN disjunct
- \blacksquare remove a constraint from a \mathbf{E} disjunct

Experiments

- Cervical cancer screening process
- 344 positive histories, 525 negative histories
- 15 possible events:

 $invitation, papTest, sendPapTestSample,\\ sendPapTestResult(neg), sendPapTestResult(pos),\\ sendNegativeLetter, colposcopy, biopsy,\\ sendBiopsySample, sendBiopsyResult(neg),\\ sendBiopsyResult(pos), positivePhoneCall, refusal,\\ sendColposcopyResult(neg),\\ sendColposcopyResult(dubious)$

Cervical Cancer Screening

Language bias:

- atoms H(e,T) and H(e,T1) in the body for every possible event e where T and T1 are two variables
- a positive disjunct in the head for every possible event e containing the expectation $\mathbf{E}(e,T2)$ and the constraints

T < T2 - 1, T1 < T2 - 1, T = T2 - 1, T1 = T2 - 1

• a negative disjunct in the head for every possible event e containing the expectation $\mathbf{EN}(e, T2)$ and the constraints

T < T2 - 1, T1 < T2 - 1, T = T2 - 1, T1 = T2 - 1

Results: a complete and consistent theory, learned in 40 minutes

Theory Learned

7 ICs, among which: $\mathbf{H}(biopsy, T)) \land \mathbf{H}(sendPapTestResult(neq, T1) \rightarrow false.$ **Excludes 8 negatives** $\mathbf{H}(biopsy, T) \land \mathbf{H}(invitation, T1) \rightarrow$ $\mathbf{EN}(biopsy, T2) \wedge T1 = T2 - 1.$ **Excludes 25 negatives** $\mathbf{H}(sendPapTestResult(pos, T) \land \mathbf{H}(invitation, T1)) \rightarrow$ $\mathbf{E}(colposcopy, T2) \land T < T2 - 1 \land T1 < T2 - 1.$ **Excludes 9 negatives** $\mathbf{H}(invitation, T) \rightarrow$ $\mathbf{E}(papTest, T1) \land T = T1 - 1 \lor \mathbf{E}(refusal, T1) \land T = T1 - 1.$ **Excludes 456 negatives** $\mathbf{H}(sendPapTestResult(neg), T) \land \mathbf{H}(invito, T1) \rightarrow$ $\mathbf{EN}(papTest, T2) \land T < T2 - 1.$ **Excludes 25 negatives**

Experiments

- Combinatorial auction
- 324 positive histories, 3676 negative histories randomly generated
- Example IC:

$$\begin{split} \mathbf{H}(tell(a, b, op_au(item, TEnd, TDead), auction1), TOpen) \land \\ \mathbf{H}(tell(b, a, bid(item, Quote), auction1), TBid) \rightarrow \\ \mathbf{E}(tell(a, b, answer(lose, item, Quote), auction1), TLose) \land \\ TLose \leq TDead \land TEnd < TLose \lor \\ \mathbf{E}(tell(a, b, answer(win, item, Quote), auction1), TWin) \land \\ TWin \leq TDead \land TEnd < TWin \end{split}$$

Future Works

- More experiments
- Application of other learning from interpretation algorithms: Claudien, WARMR
- Improvement of the bias: at the moment just sets, in the future more elaborate