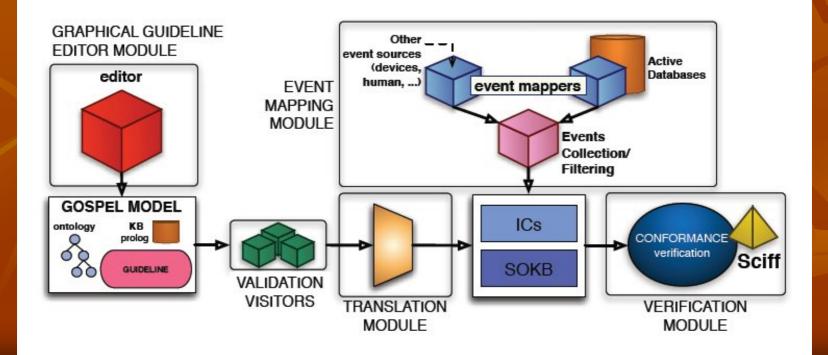
Conformance verification of careflow process executions: a case study on cancer screening

Evelina Lamma, Sergio Storari ENDIF – University of Ferrara Federico Chesani,Paola Mello, Marco Montali DEIS – University of Bologna Pietro De Matteis NOEMALIFE - Bologna

A framework for defining and verifying clinical guidelines: a case study on cancer screening

Medical guidelines and protocols

 Medical guidelines and protocols are used to improve the quality of medical care

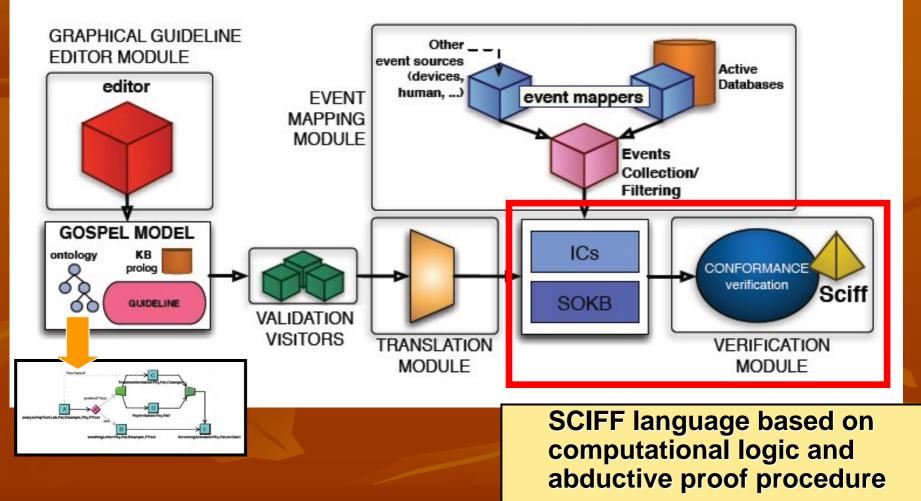

- A medical protocol is the implementation of a guideline in a specific environment
 - Modeled as a careflow: medical actors receive objects, perform activities, operate under rules, and transmit objects to other actors
 - Components of a careflow:
 - Actors: patients, physicians, instruments, software agents
 - Objects: data, documents, images, physical samples
 - Activities: processes, actions, computations
 - Rules: constraints, conditions, limits, boundaries

A framework for defining and verifying clinical guidelines: a case study on cancer screening

Careflow conformance verification

Careflow conformance verification to identify:

- Wrong participant behaviors
- Parts of the protocol not well defined

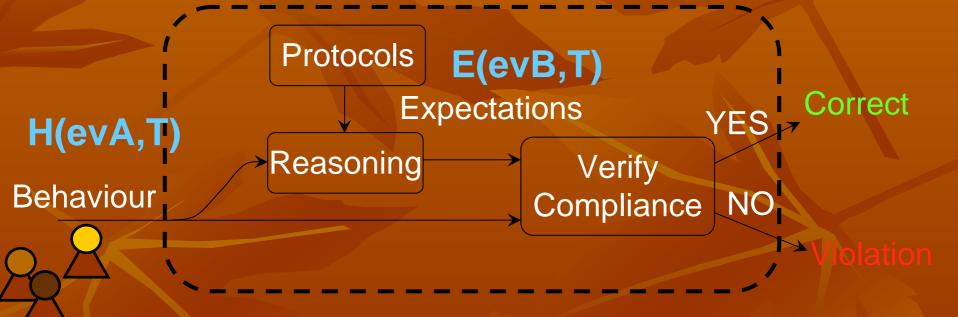

A framework for defining and verifying clinical guidelines: a case study on cancer screening

Graphical guideline editor: GOSpeL

- Simple graphical language for specifying the careflow process
- The GOSpeL representation of a careflow consists of:
 - a flow chart, which models the careflow evolution
 - a domain ontology for specifying actors, activities, and objects of the careflow
- Ontology management by using the PROTÉGÉ-2000 API

A framework for defining and verifying clinical guidelines: a case study on cancer screening

Careflow conformance verification



(SOCS European project)

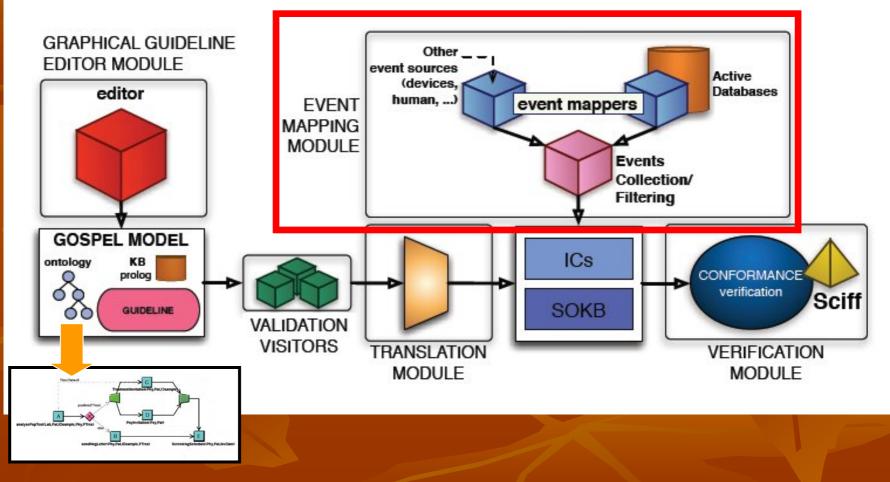
A framework for defining and verifying clinical guidelines: a case study on cancer screening

SCIFF framework

Social Infrastructure

Integrity Constraints (IC): body \rightarrow head

H(ask(A,B,Something), T1)) --> E(ansyes(B, A, Something), T2) ∧ T2 ≥T1 E(ansno(B, A, Something), T2) ∧ T2 ≥T1 A framework for defining and verifying clinical guidelines: a case study on cancer screening


Verification module

The SCIFF Proof Procedure:

- processes the events: for each event it looks for a possible "unification" with the body of one (or more) SIC
- for each IC whose "body" is verified by the events, the expectations defined in the head are generated.
- detects two types of violations:
 - H with EN: an actor performs activities explicitly not expected by the careflow
 - E without H: an actor does not act as expected by the careflow
 - H without E: an actor performs activities not expected by the careflow

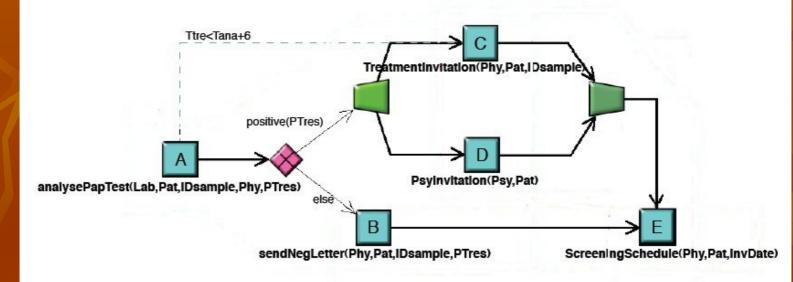
A framework for defining and verifying clinical guidelines: a case study on cancer screening

Careflow conformance verification

A framework for defining and verifying clinical guidelines: a case study on cancer screening

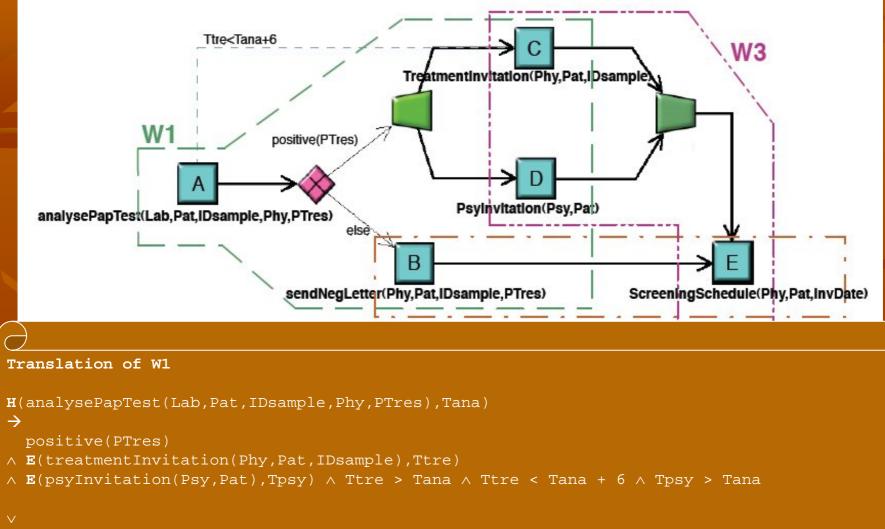
SPRING project

 Joint project of the Emilia Romagna region of Italy: ENDIF – Univ. Ferrara; DEIS – Univ. Bologna; NOEMALIFE Bologna; Screening Center Bologna


Project GOAL: to support definition and verification of cancer screening protocols

Cancer screening to early detect and treat cancer (cervical, breast and colorectal cancers)
 Case study on cervical cancer

A framework for defining and verifying clinical guidelines: a case study on cancer screening


Careflow example

The Lab (actor) analyzes a pap-test IDsample (object) executed on a patient Pat (actor) and sends the results PTres (object) to a physician Phy (actor). Phy evaluates IDsample as positive or negative. If positive, Phy invites (within 6 days) Pat for a treatment and a psychologist Psy (actor) invites Pat for a consultation. If negative, Phy sends a negative pap-test letter to Pat. Finally, Phy schedules the next pap-test for Pat.

A framework for defining and verifying clinical guidelines: a case study on cancer screening

Translation of W1

not(positive(PTres)) < E(sendNegLetter(Phy, Pat, IDsample, PTres), Tsen) <-> Tsen > Tana

A framework for defining and verifying clinical guidelines: a case study on cancer screening

Example of conformant history

Happened Events

H(analysePapTest(lab1, pat1, 123, phy1, [results]), 5)

H(psyInvitation(psy1, pat1), 7)

Start

H(treatmentInvitation(phy1, pat1, 123), 10)

H(screeningSchedule(phy1, pat1, 15apr2007), 30)

Expectations

E(analysePapTest(Lab, Pat, IDSample, Phy, PTRes), Ta)

Generated by IC1 E(psyInvitation(psy1, pat1), Tpsy) Tpsy > 5 supposing E(treatmentInvitation(phy1, pat1, 123), Ttre) 5 < Ttre < 11 positive([results]) = true

Generated by IC3 E(screeningSchedule(phy1, pat1, Date), Tsche) Tsche > 10

A framework for defining and verifying clinical guidelines: a case study on cancer screening

Example of violation (1/2)

Happened Events

H(analysePapTest(lab1, pat1, 123, phy1, [results]), 5)

H(psyInvitation(psy1, pat1), 7)

Start

H(treatmentInvitation(phy1, pat1, 123), 15)

Expectations

Violation of A the time constraint

T E(analysePapTest(Lab, Pat, IDSample, Phy, PTRes), Ta)

Generated by IC1 E(psyInvitation(psy1, pat1), Tpsy) Tpsy > 5 E(treatmentInvitation(phy1, pat1, 123), Ttre) 5 < Ttre < 11 positive([results]) = true

A framework for defining and verifying clinical guidelines: a case study on cancer screening

Example of violation (2/2)

Happened Events

H(analysePapTest(lab1, pat1, 123, phy1, [results]), 5)

H(sendNegLetter(Phy1, Pat1, 123, [res1, ..., resn]), 10)

The physician

performs an activity

not expected by the

careflow

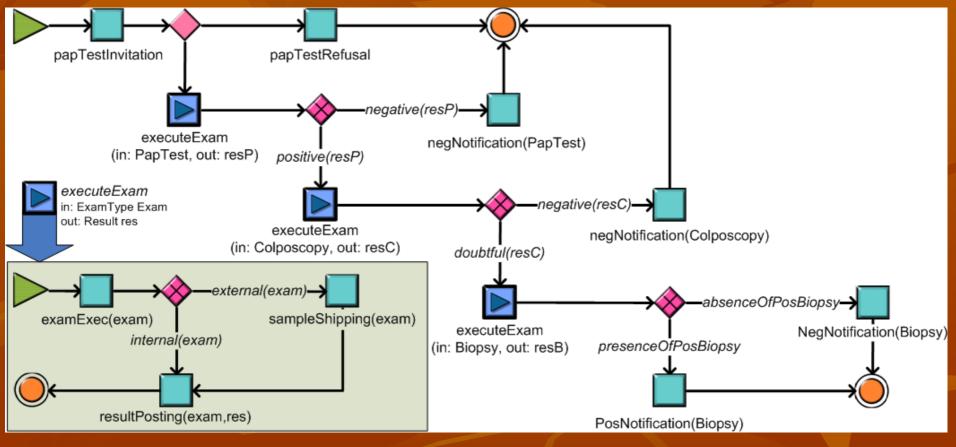
The protocol evaluates the pap-test as positive but the physician as negative and behaves as negative

Start

Expectations

These

Expectations are

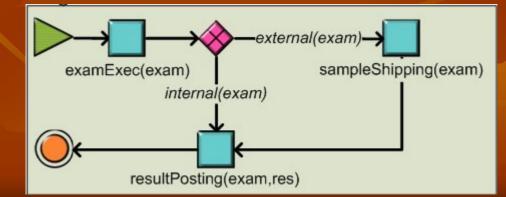

not fullfilled

E(analysePapTest(Lab, Pat, IDSample, Phy, PTRes), Ta)

Generated by IC1 supposing E(psyInvitation(psy1, pat1), Tpsy) Tpsy > 5 E(treatmentInvitation(phy1, pat1, 123), Ttre) 5 < Ttre < 11 positive([results]) = true

A framework for defining and verifying clinical guidelines: a case study on cancer screening

Screening careflow model in SPRING


A framework for defining and verifying clinical guidelines: a case study on cancer screening

Traslation of the careflow model

The careflow model is translated in 14 ICs

executeExam translation:

- H(eseguiEsame(TipoEsame,IdEsame),Tesa) ∧ analisi_esterna(TipoEsame)
 → E(invioCampione(TipoEsame,IdEsame),Tinv) ∧ Tinv > Tesa.
- H(eseguiEsame(TipoEsame,IdEsame),Tesa) ∧ analisi_interna(TipoEsame)
 → E(invioRisultato(TipoEsame,IdReferto,Esito), Tris) ∧ Tris > Tesa.
- H(invioCampione(TipoEsame,IdEsame),Tinv)
 - → E(invioRisultato(TipoEsame,IdReferto,Esito),Tris) \land Tris > Tinv.

A framework for defining and verifying clinical guidelines: a case study on cancer screening

Screening event log

- Database of the screening center translated in event log
- Some incorrect behaviours have been randomly introduced in the event log
- The resulting event log consists of 1950 careflow process executions:
 - Shortest careflow process execution consists of one event (the invitation to take part to the screening followed by no response)
 - Longest careflow process execution consists of 18 events (representing the whole careflow plus the repetition of some laboratory exams due to an undecidable analysis result).
 - The average number of events is 4

A framework for defining and verifying clinical guidelines: a case study on cancer screening

Conformance verification results

Conformance verification execution time:

- 30 min Total and 1sec Average
- Conformance result:
 - 877 Conformant executions over 1950
- Analysis of non conformant careflow process executions:
 - Executions classified as conformant were confirmed
 - Some particular executions were erroneously classified as non conformant:
 - We introduces some special abducibles in the ICs:
 - To classify these executions as conformant
 - To warn about special executions

 Second verification round: 64 executions are still not conformant ("wrong behaviour" introduced in the database and some insights)

A framework for defining and verifying clinical guidelines: a case study on cancer screening

Conclusions

 Use computational logic to verify conformance of participant behaviors within a careflow

Our approach proposes:
Formal language to model the careflow
Abductive proof procedure to verify the conformance

Case study on cervical cancer screening

A framework for defining and verifying clinical guidelines: a case study on cancer screening

Future works

Change GOSpeL with another graphical guideline modeling notation:
 GLARE: joint work with Terenziani/Bottrighi
 ASBRU
 Etc..

Use gSCIFF:
 Properties verification

A framework for defining and verifying clinical guidelines: a case study on cancer screening

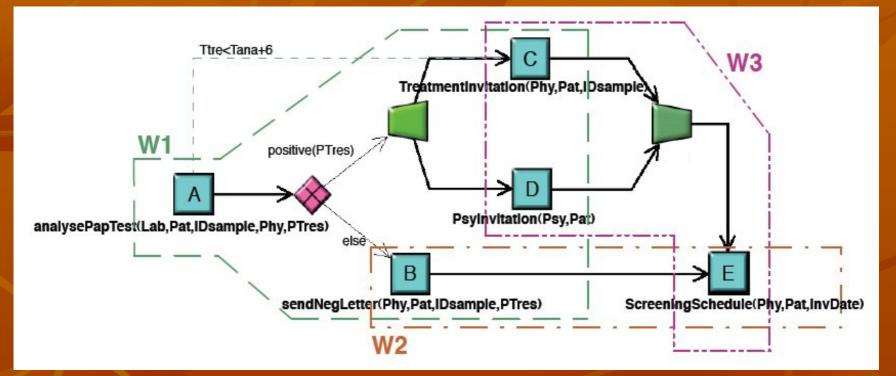
Thank you!

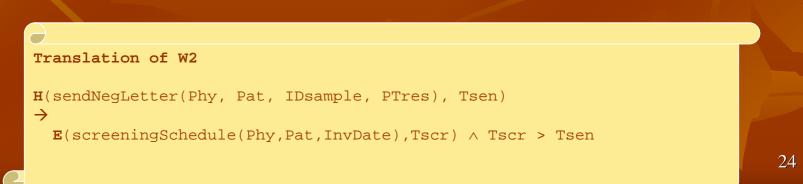
A framework for defining and verifying clinical guidelines: a case study on cancer screening

References

Publications

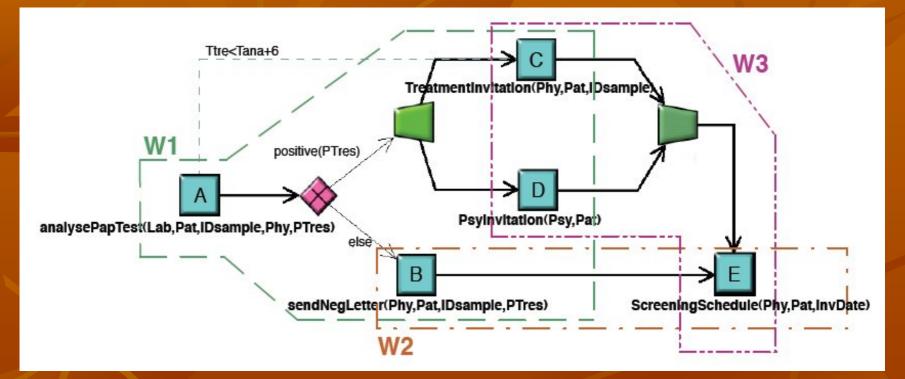
- Ciampolini A, Mello P, Montali M, Storari S, Using social integrity constraints for on-the-fly compliance verification of medical protocol. In: A. Tsymbal, P. Cunningham, eds: Proceedings of eighteenth IEEE Symphosium on Computer Based Medical Systems (CBMS) 2005. IEEE Press, 2005: 503-505
- Chesani F, Ciampolini A, Mello P, Montali M, Storari S. Testing guidelines conformance by translating a graphical language to computational logic. The ECAI 2006 international workshop on Artificial Intelligence in Healthcare: evidence-based guidelines and protocols. Printed by the organizers and available online at <u>http://www.cs.vu.nl/~annette/FinalVersions/Chesani.pdf</u>. 2006
 - M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, M. Montali, S. Storari. *Abduction for Specifying and Verifying Web Service Choreographies.* The ECAI 2006 4th International Workshop on Artificial Intelligence for Service Composition 2006. Printed by the organizers and available online at <u>http://ecai2006.itc.it/AISC06/W29.pdf</u>. 2006:15-20.

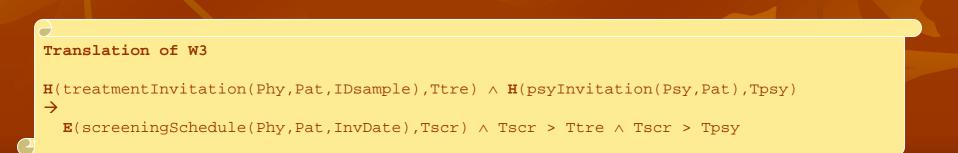

Web references:


 The SCIFF Abductive Proof Procedure: http://www-lia.deis.unibo.it/research/sciff/

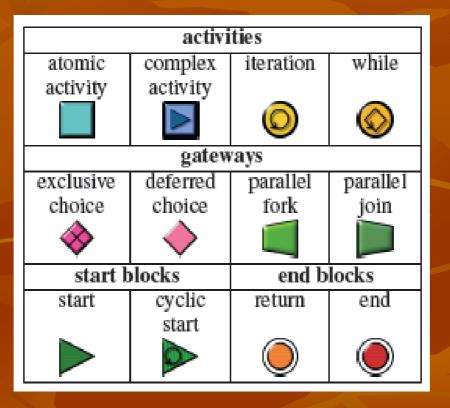
A framework for defining and verifying clinical guidelines: a case study on cancer screening

A framework for defining and verifying clinical guidelines: a case study on cancer screening


Translation of W2



A framework for defining and verifying clinical guidelines: a case study on cancer screening


Translation of W3

A framework for defining and verifying clinical guidelines: a case study on cancer screening

GOSpeL graphical elements

A framework for defining and verifying clinical guidelines: a case study on cancer screening

Idea behind the translation (1/2)

Some GOSpeL blocks can be mapped into events (event-blocks):

Activity blocks represent events specified by:

- name of the associated ontological activity
- variables representing formal participants
- Example: hold(Phy,Pat)
- START / END blocks represent special events

Each translation starts from an event-block A:

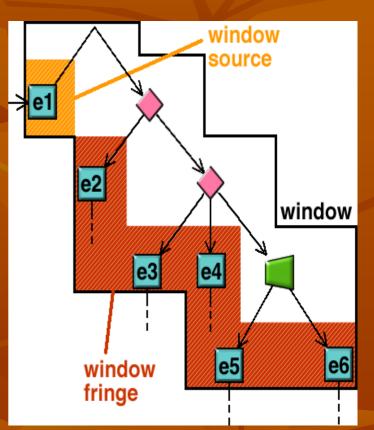
- This event A is supposed to happen
- The relations after A in the model describe what it is expected to happen after A

A framework for defining and verifying clinical guidelines: a case study on cancer screening

Idea behind the translation (2/2)

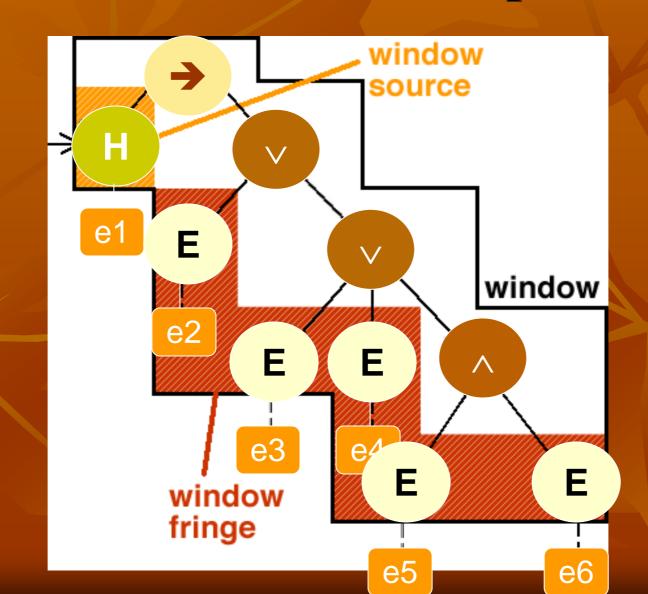
• The meaning of a translation in a SIC:

- The body represents that an event is happened
- The head represents what the model prescribe to happen after this event
- The model is translated in a set of SIC


Two issues:

- Isolate a part of the model that can be mapped in a SIC
- Build a recursive translation algorithm

A framework for defining and verifying clinical guidelines: a case study on cancer screening

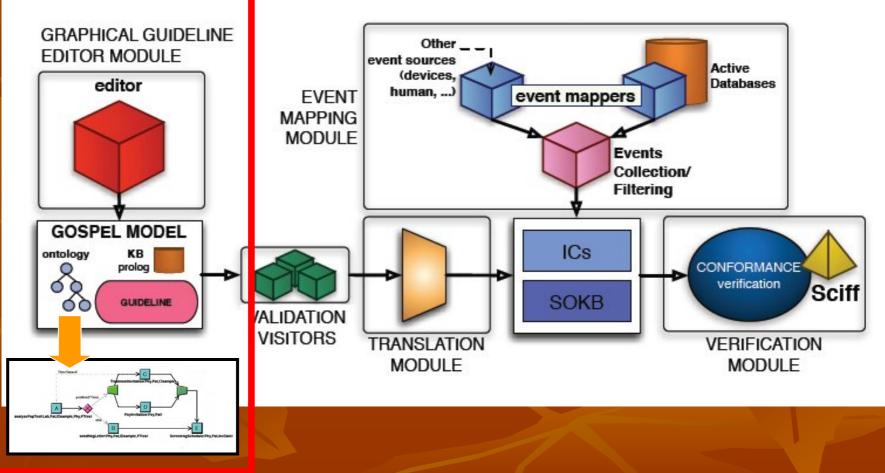

Definition of Minimal windows

- A group of contiguous blocks
- Properties:
 - Window source and fringe must contain only event-blocks
 - Inside the window there must be only split and/or merge blocks (minimal)
 - All the outgoing (ingoing) relations exiting from (going to) a split block (merge block) must be considered
- Each minimal window is translated into a SIC

A framework for defining and verifying clinical guidelines: a case study on cancer screening

Translation of GOSpeL

30


A framework for defining and verifying clinical guidelines: a case study on cancer screening

Translation of a minimal window

- Events in the window source became H
- Events in the window fringe became **E**
- Gateways inside the window contribute to the SIC structure:
 - Deferred choice: a disjunction of events is inserted in the head
 - Exclusive choice: a disjunction of events is inserted in the head and a logic condition is associated to each alternative flow
 - Parallel split: a conjunction of events is inserted in the head
 - Parallel join: a conjunction of events is inserted in the body

A framework for defining and verifying clinical guidelines: a case study on cancer screening

GPROVE framework architecture

