
Web Service Composition using DLTL

Laura Giordano1 and Alberto Martelli2

1Dipartimento di Informatica, Università del Piemonte Orientale, Alessandria
2Dipartimento di Informatica, Università di Torino, Torino

Web Service Composition using DLTL – p.1/19



DLTL

• The action theory is based on Dynamic Linear Time
Temporal Logic (DLTL), an extension of LTL (the
propositional linear time temporal logic).

• DLTL extends LTL by strengthening the until operator by
indexing it with the regular programs of dynamic logic. It is,
essentially, a dynamic logic equipped with a linear time
semantics.

• DLTL has an exponential time decision procedure based
on Büchi automata.

Web Service Composition using DLTL – p.2/19



Action theory

For each (communicative) action a we can define
Action laws

2(α → [a]β)

Precondition laws

2(α → [a]⊥)

Causal laws

2((α ∧©β) → ©γ)

Persistency is modeled by a completion construction.

Web Service Composition using DLTL – p.3/19



Deterministic actions

• We assume actions to be deterministic .
• Nondeterminism in protocols is represented by the

possibility of executing different actions in a given state.

Web Service Composition using DLTL – p.4/19



Specifying web services

We adopt a social approach to protocol specification, where
communicative actions affect the "social state" of the system,
rather than the internal states of the participating agents.

The social state records the social facts, like the permissions
and the commitments of the agents, which are created and
modified in the interactions among them.

Web Service Composition using DLTL – p.5/19



Incomplete knowledge

Each agent participating in a conversation is only aware of some
of the effects of communicative actions in the conversation
(namely those it is involved in as a sender or as a receiver).

We use a knowledge operator K to describe the knowledge
shared by groups of agents.

An epistemic state is a complete and consistent set of epistemic
fluent literals, and it provides a three-valued interpretation in
which each literal l is true when Kl holds, false when K¬l holds,
and undefined when both ¬Kl and ¬K¬l hold.

Web Service Composition using DLTL – p.6/19



Example: Purchase service

Two roles : P , the producer, and C, the customer.

Actions :
request(C,P ) (the customer sends a request for a product),
offer(P,C) and not_avail(P,C) (the producer sends an offer or
says that the product is not available), accept(C,P ) and
refuse(C,P ) (the customer accepts or refuses the offer),
begin(C,P ) and end(C,P ) (to start and finish the protocol).

Fluents :
requested, the product has been requested, offered , the product
is available and an offer has been sent (¬offered means that the
product is not available), accepted, the offer has been accepted,
Pu, the protocol is being executed.
Commitments are special fluents.

Web Service Composition using DLTL – p.7/19



Purchase service

C: customer
P: producer

request(C,P)
offer(P,C)

not_avail(P,C)

accept(C,P)

refuse(C,P)

Web Service Composition using DLTL – p.8/19



Action laws

Some action laws

2[begin(C,P )]CC(Pu,P,C,K(requested),Kw(offered))
2[offer(P,C)]K(offered)
2[not_avail(P,C)]K(¬offered)
2[accept(C,P )]K(accepted)
2[refuse(C,P )]K(¬accepted)

Kw(f) is a shorthand of the formula (K(f) ∨ K(¬f))

In the initial state, all fluents are undefined.

Web Service Composition using DLTL – p.9/19



Permissions

The permissions to execute communicative actions in each state
are represented by precondition laws. For instance,

2((¬K(Pu) ∨ ¬K(offered) ∨ Kw(accepted)) → [accept(C,P )]⊥)

an offer cannot be accepted if
• Pu does not hold or
• an offer has not been made or
• the truth value of accepted is known (the customer has

already accepted or refused an offer).

Web Service Composition using DLTL – p.10/19



Reasoning about protocols using automata

The satisfiability problem for DLTL can be solved in deterministic
exponential time, as for LTL, by constructing for each formula α

a Büchi automaton Bα such that there is a one to one
correspondence between models of the formula and infinite
words accepted by Bα (we have developed an “on-the-fly”
algorithm which extend the one for LTL).

For instance, given a domain description

(Comp(Π) ∧ Init ∧
∧

i
(Permi ∧ Comi)) ∧ Constr

where Constr describes a set of temporal constraints, we can
construct the corresponding Büchi automaton, such that all runs
accepted by the automaton represent runs of the protocol
satisfying the given constraints.

Web Service Composition using DLTL – p.11/19



Composing web services

We want to compose a service Sh for shipping goods with the
producer service Pu previously described.
The Sh protocol describes the interactions between a customer
C and a shipper S.
For simplicity we assume that the protocol of the shipping
service has the same actions as the producer service.

The aim of the customer is to extract from the domain
description of PS a plan allowing it to interact with the two
services.

Web Service Composition using DLTL – p.12/19



Reasoning about service composition

The domain description DPS of the composed service can be
obtained by taking the union of the sets of formulas specifying
the two protocols: DPS = DPu ∪DSh. The runs of the composed
service PS give all the interleavings of the runs of the two
protocols (parallel composition).

The goal of the plan will be specified by means of a set of
constraints Constr which will take into account the properties of
the composed service.

The specification of the interaction protocol of the composed
service is given by DPS ∪ Constr, from which the customer will
extract the plan.

Web Service Composition using DLTL – p.13/19



Examples of constraints

The customer cannot request an offer to the shipping service
until it has not received an offer from the producer:

2(¬KC(offered_Pu) → [request_Sh(C,S)]⊥)

The customer must accept both offers or none of them:

3〈accept_Pu(C,P )〉 ↔ 3〈accept_Sh(C,S)〉

Web Service Composition using DLTL – p.14/19



How to get a plan

A linear plan can be easily obtained by checking satisfiability
of the formula DPS ∪ Constr.
If the formula has a model, this model represents a run of the
two services satisfying the given constraints (plan ).

To do this, we can build the Büchi automaton derived from
DPS ∪ Constr, and search it for an accepting run.

Unfortunately linear plans are not adequate.

Web Service Composition using DLTL – p.15/19



Problems

The run

begin_Pu; request_Pu; offer_Pu; accept_Pu; begin_Sh;
request_Sh; offer_Sh; accept_Sh; end_Pu; end_Sh

is correct with respect to the above constraints, since both offers
are accepted.

However, if the shipping service replies with not_avail_Sh
instead of offer_Sh, there is no correct run with the prefix

begin_Pu; request_Pu; offer_Pu; accept_Pu; begin_Sh;
request_Sh; not_avail_Sh

No possibility of replanning to find a different plan.

Web Service Composition using DLTL – p.16/19



Dealing with nondeterminism

If a protocol contains a point of choice among different
communicative actions, the sender of these actions can choose
freely which one to execute.

From the viewpoint of the receiver, that point of choice is a point
of nondeterminism to care about. For instance, the customer
cannot know whether the service Pu will reply with offer_Pu or
not_avail_Pu after receiving the request.

Therefore the customer cannot simply reason on a single choice
of action, but he will have to consider all possible choices of the
two services, thus obtaining alternative runs, corresponding to a
conditional plan.

Web Service Composition using DLTL – p.17/19



Conditional plans

An example of conditional plan is the following

begin_Pu; request_Pu;
(offer_Pu; begin_protocol_Sh; request_Sh;

(offer_Sh; accept_Pu; accept_Sh; end_Pu; end_Sh +
not_avail_Sh; refuse_Pu; end_Pu; end_Sh)) +

(not_avail_Pu; end_Pu)

This plan is represented as a regular program, where, in
particular, “+" is the choice operator.

All runs of this plan satisfy the formula DPS ∪ Constr.
This can be proved in DLTL, since in this logic it is possible to
deal with regular programs.

Web Service Composition using DLTL – p.18/19



How to build a conditional plan

• Build the Büchi automaton obtained from the domain
description DPS and the constraints Constr.

• Mark as AND states those states of the automaton whose
outgoing arcs are labeled with actions whose sender is one
of the services.

• Extract from the automaton a conditional plan, such that all
outgoing arcs from an AND state belong to an accepting
run.

Approach similar to Pistore, Traverso et al., but with different
formalisms and tools.

Web Service Composition using DLTL – p.19/19


	�f DLTL
	�f Action theory
	�f Deterministic actions
	�f Specifying web services
	�f Incomplete knowledge
	�f Example: Purchase service
	�f Purchase service
	�f Action laws
	�f Permissions
	�f Reasoning about protocols using automata
	�f Composing web services
	�f Reasoning about service composition
	�f Examples of constraints
	�f How to get a plan
	�f Problems
	�f Dealing with nondeterminism
	�f Conditional plans
	�f How to build a conditional plan

