B-Tropos:

Agent-oriented requirements engineering meets computational logic for declarative business process modelling and verification

> Paolo Torroni, U. Bologna Joint work with Volha Bryl, Nicola Zannone, U. Trento Marco Montali, Paola Mello, U. Bologna

Positioning

(Agent-Oriented) Early Requirement Engineering Tropos (ER, A Abd Declarative Service Flow Specification Languages

Dec

W H A T

Abductive (1) Logic Programming SCIFF WHAT \Leftrightarrow HOW (ALP, CLP) 2

CLIMA VIII @ Porto

Tropos
B-Tropos
Mapping B-Tropos onto SCIFF
Conclusion

CLIMA VIII @ Porto

Actor diagram

Stakeholders and system actors
Network of dependencies

Goal diagram

Perspective of a specific actor
Analysis of actor's goals
Means-end analysis
AND/OR decomposition
Contribution analysis

GOALS good financial plannig evaluate costs assess costs AND evaluate bill of quantities

CLIMA VIII @ Porto

Paolo of quantities

Extended notation

Start & Completion
Min/max duration time interval
Input/Output data
(Time) Constraints

CLIMA VIII @ Porto

Process-oriented constraints (Tropos meets DecSerFlow)

CLIMA VIII @ Porto

CLIMA VIII @ Porto

From modeling to reasoning

B-Tropos meets SCIFF

Abductive Logic Programming

Starting from a goal *G*, typically not entailed by a given knowledge base: *KB* ⊭ *G*,
Find a set ∆ ⊆ *A* such that *G* is entailed by the *KB*The *IC* are not violated

 $KB \cup \Delta \models G$ $KB \cup \Delta \models IC$

Bonus: Δ is "minimal"

CLIMA VIII @ Porto

SCIFF: ALP language & p-p

- Events/expectations are first-class citizens
- Nice integration with CLP (constructive abduction/negation)
- Good theory developed (with strong results)
 - Thoroughly tested implementation
 - Uses constraints technology
 - Relatively efficient (tested with thousands of events, gives results within seconds/minutes)
 - Nice graphical interface and many add-ons
- Can reason on run-time upcoming events
 - use same language also for analysis/monitoring/checking/...
- And more

SCIFF Syntax

SCIFF program: (KB, A, IC) KB: set of definitions Head ← Body A: abducible atoms (including E, EN, and H) • IC: set of integrity constraints $Body \rightarrow Head$ • Expressions that must be true at all times Head ::= Disjunct v Disjunct v ... v Disjunct • Goal: conjunction of atoms and constraints

SCIFF: Events & Expectations

EN(Ev,T)

CLIMA VIII @ Porto

SCIFF: Declarative Semantics

Extends semantics of ALP

$\begin{array}{cccc} \textit{KB} \cup E \cup \Delta &\vDash G \\ \textit{KB} \cup E \cup \Delta &\vDash \textit{IC} \end{array}$

By defining (minimal) abductive answers

 (E, Δ)

 representing possible ways to achieve G

CLIMA VIII @ Porto

From B-Tropos to SCIFF

- AND/OR decompositions (trivial)
- Positive contributions: target achieved if contribution's source is achieved
- Negative contributions: denials
- Goal/task dependencies: expectation on depender's behaviour
- Underspecified models: use abduction

Goals & Tasks

• achieve(ACTOR,GOAL,T_i,T_f) \leftarrow $T_f \in D^{+Ti} \wedge ac_1 \wedge ac_2 \wedge ...$ • execute(ACTOR,TASK,T_i,T_f) \leftarrow $T_f \in D^{+Ti} \wedge ac_1 \wedge ac_2 \wedge ...$

Task & goal dependency

 execute(wareh,buy_res_e_s,T_i,T_f) ← E(delegate(wareh,purchases,buy_res_e_s,T_f), T_i).
 H(del(customer_care,sales,present_prod,T_f), T_i) → achieve(sales,pres_prod,T_i,T_f) ∧ T_i > T_d

CLIMA VIII @ Porto

Response connections

 Response **hap**(event(Ev, A, X), T_1) \land c $\rightarrow exp(event(Ev,A,X),T_2) \land r \land T_2 \in T_h^{+T1}$ Weak response **hap**(event(Ev,A,X),T₁) \wedge c \wedge **hap**(event(Ev,A,X),T₂) \rightarrow r \wedge T₂ \in T_b^{+T1} Negation response **hap**(event(Ev, A, X), T_1) \land c \wedge hap(event(Ev,A,X),T₂) \wedge r \wedge T₂ \in T_b^{+T1} \rightarrow \perp

Results so far (ongoing)

- Process-oriented constraints in Tropos
- Mapping of (very) high-level concepts into LP framework
- Modeling of sample scenarios (taken from national FIRB project)
- Verification of model properties and properties of mapping (termination)
- Possible animation using SCIFF agents
- Run-time verification of compliance (e.g. delegation) using the same language

CLIMA VIII @ Porto

Conclusion

- Research being done in the intersection of three areas (still ongoing)
- Touches three important aspects (why, what, how)
- Role of LP is to perform reasoning (verification)
- Graphical notation extended (B-Tropos)
- Focus on temporal reasoning
- Implementation! Being integrated in Tropos

CLIMA VIII @ Porto