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The need of 
declarativeness
Different authors claims the importance of adopting declarative 
and open paradigms to model interaction/processes

van der Aalst et al.(BPM / SOA): DecSerFlow/ConDec/CigDec

Singh et al. (MAS): commitment approaches 

Our work within the SOCS EU Project (MAS) and PRIN projects (together with 
UNITO): logic-based approaches to verify interaction

Declarative models
capture the essential of interaction abstracting away from implementation details

focus on the domain problem rather than on a specific (procedural) solution 

Open approaches
participants should be let freely act where not explicitly forbidden 

closeness undermines flexibility

Avoiding to over-specify and over-constrain interaction is of 
key importance!

Need of an underlying formal semantics (verification)
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DecSerFlow
Graphical declarative language for specifying 
service flows

A DecSerFlow models is described by

A set of activities (messages)

A set of relationships among activities, a là policies / business rules

Relationships constrain the way activities should be performed

Semantics of the model as the conjunction of 
relationships

Different applications: CigDec, ConDec, ...



DecSerFlow relationships

Each relationship has a semantics given in terms 
of Linear Temporal Logic

formulae on “finite traces”, because the choreography should 
eventually finish

Extensible language

Three families of core relationships

Existence formulas (similar to UML cardinalities)

Relation formulas (positive relationships between activities)

Negation formulas (negated version of relation formulas)



Existence Formulas

Constraints on the number of activities execution

Similar to UML cardinalities...

absence N A should be executed at most N times

existence N A should be executed at least N times

exactly N A should be executed exactly N times

mutual 
substitution

At least one between A and B 
should be executed

A

0..N

A

N..*

A

N

A B



Relation Formulas (1)

Constrain the happening of activities w.r.t. other 
activities execution

Three basic temporal orderings: no ordering, after, 
before

Succession formula constructed by combining the 
corresponding response and precedence versions

Number of lines determines how much the 
relationship is “strict”



responded 
presence

if A is executed, B should 
also be executed

Relation Formulas (2)

response
if A is executed, B should be 
executed after A

precedence if B is executed, A should be 
executed before B

A B

A B

A B
A B
succession

response if A is executed, B should be 
executed after A

alternate 
response

B is response of A and there should 
exists at least one B between two As

chain 
response

if A is executed, B should be 
executed next (immediately after)

A B

A B
coexistence

A B

A B

alternate and chain precedence/succession follow straightforward...

constraint
strength



responded 
absence

if A is executed, B can never 
be executed

Negation Formulas

negation 
response

B can never be executed 
after A

precedence if B is executed, A can never 
be executed before B

A B

A B

A B
A B

negation
succession

negation response B can never be executed after A

negation alternate 
response

There can never be a B between 
every two As

negation chain 
response

B cannot be executed next to A
(the sequence A B is forbidden)

A B

A B
not coexistence

A B

A B

alternate and chain precedence/succession follow straightforward...

constraint
strength
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Mapping DecSerFlow 
onto SCIFF
Very intuitive translation (close to the natural 
language description of DecSerFlow)

DecSerFlow SCIFF

Conjunction of constraints 
(formulas)

Conjunction of rules (IC)

Activity Event

Formula (set of) IC

existence and relation formulas rules involving positive expectations

absence and negation formulas rules involving negative expectations



Mapping of existence 
formula

H(A, T1) /\ H(A, T2) /\ T2 > T1 /\ ... /\ H(A, TN) /\ TN>TN-1

→EN(A,T) /\ T > TN. 

→E(A, T) /\ E(A, T2) /\ T2 > T /\ ... /\ E(A, TN) /\ TN>TN-1. 

combination of existence_N and absence_N formulas

→ E(A, _) \/ E(B, _).

A

0..N

A

N..*

A

N

A B



Mapping of relation and 
negation formulas
Straightforward mapping, by interpreting the natural language 
description

The mapping of negation formulas is similar, but all E are 
substituted by EN

H(A, _) → E(B, _).

H(A, TA) → E(B, TB) /\ TB > TA. H(A, TA) → EN(B, TB) /\ TB > TA.

H(B, TB) → E(A, TA) /\ TA < TB.

response and
H(A, TA1) /\ H(A, TA2) /\ TA2 > TA → E(B, TB) /\ TB > TA /\ TB < TA2

A B

A B

A B

A B

A B
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Extending branching 
formulasDeclarative Specification and Verification of Service Choreographies · 17

Table VIII. Formalization of a branching responded existence formula in SCIFF.
type representation

equivalent
representation

formalization

responded existence

(A1 ∨ A2, B)
!"

#

!$

!"

#

!$

H(performed(A1), TA)

→E(performed(B), TB).

H(performed(A2), TA)

→E(performed(B), TB).

responded existence

(A, B1 ∨ B2)
!"

#

!$ H(performed(A1), TA)

→E(performed(B1), TB1)

∨E(performed(B2), TB2).

responded existence

(A, B1 ∧ B2)
!"

#

!$

!"

#

!$

H(performed(A), TA)

→E(performed(B1), TB).

H(performed(A), TA)

→E(performed(B2), TB).

responded existence

(A1 ∧ A2, B)
!"

#

!$ H(performed(A1), TA2)

∧ H(performed(A2), TA2)

→E(performed(B), TB).

replicating the corresponding Integrity Constraint for each activity. A more com-
plex case is the one in which the formula has conjunct source activities: it should
trigger only when all such activities are executed. SCIFF is directly able to repre-
sent this feature: the corresponding rule will have as body the conjunction of the
involved happened events.

4.4 Extending DecSerFlow with quantitative temporal constraints

Another interesting feature, thanks to the SCIFF reasoning capabilities on content
data (and therefore also on execution times), is the possibility to extend the basic
DecSerFlow relation formulas (and the simple negation formulas, i.e. negation
response and precedence) with quantitative information over times, e.g. to express
delays and deadlines. Such an information is used to reduce the validity of the
formula’s target time (or, in the negative case, to delimit the forbidding of the
target), by defining either a lower or an upper bound on it.

Let us suppose, for example, to modify the photo choreography shown in Figure
3 by specifying also that “at most 24 hours can elapse between the order of a
product and the corresponding delivery”. By assuming that times are expressed in
hours, such a statement could be represented by augmenting the succession formula
between the three kinds of order and the delivery activity with the knowledge on
the deadline: the delivery time should be after the order one, but also less than
the order one plus 24 hours (and vice versa). This could be seamlessly modeled
in SCIFF by extending the formalization of the response formula as follows (for
simplicity, only the succession between “photo” and “deliver” is shown):

H(performed(photo), Tp) → E(performed(deliver), Td)

∧Td > Tp ∧ Td < Tp + 24. (2)

H(performed(deliver), Td) → E(performed(photo), Tp)

∧Tp < Td ∧ Tp > Td − 24. (3)

ACM Journal Name, Vol. V, No. N, July 2007.
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Adding quantitative time 
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Fig. 6. Temporal constraints templates and their corresponding representation on simple formulas.

It is worth noting that in the first line of all Integrity Constraints of this kind,
variables (i.e. activities) are universally quantified. This ensures that, when con-
sidering a specific diagram, each rule will be replicated for all concrete (ground)
activities subject to the formula addressed by the rule.

For example, let us consider the implementation of the response relation, which
now is formalized as follows:

response(A, B)
∧H(performed(A), TA) → E(performed(B), TB) ∧ TB > TA.

(5)

This rule may be read as follows: “for each A, for each B and for each TA, if A
and B are subject to a response formula and A is executed at time TA, then there
should exist a TB after TA at which B is expected to be performed”.

This enables us to simply translate a specific DecSerFlow diagram by compiling
a knowledge base with a list of facts representing the different modeled formulas.

Example 4.1. Let us consider the simple following knowledge base:

response(ask_for_payment, pay).
response(receive_spam, delete_spam).

During the execution, the SCIFF proof procedure will find two different matches
ACM Journal Name, Vol. V, No. N, July 2007.

when A is 
performed, 
B should be 
performed 
at a time... →

H(A, TA)
E(B, TB) 
/\ TB > TA + N1

/\ TB < TA + N2
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DecSerFlow verification

Execution traces

Compliance

Consistency
checking

Discovery of
dead activities

Interoperability
verification

Enactment

Mining

DecSerFlow



Conformance 
Verification - Monitoring
SCIFF proof procedure: verify whether a set of 
happened events complies with the specification

At run-time, it dynamically performs reasoning and halts the 
computation waiting for further events

A-posteriori, by analyzing the entire execution trace of an instance

SOCIETY INFRASTRUCTURE

HAP

SCIFF

Declarative BP specification

EXP

NO

YES

fulfillmentExecution/Log



DecSerFlow Monitoring

a b

c

1..*
(0,10)

→E(performed(a), Ta).

→
H(performed(a), Ta)
E(performed(b), Tb)
/\ Tb > Ta /\ Tb < Ta + 10.

→
H(performed(b), Tb)
EN(performed(c), Tc).
(and viceversa)

H(performed(a),1).
H(performed(b),8).

H(performed(a),1).
H(performed(b),12).

E(performed(a), T1). fulfilled with T1=1 fulfilled with T1=1 fulfilled with T1=1

E(performed(b), T2)
/\ T2 > 1 /\ T2 < 11.

fulfilled with T2=8 VIOLATED fulfilled with T2=9

EN(performed(c), _). fulfilled VIOLATED

H(performed(a),1).
H(performed(b),9).
H(performed(c),15).



DecSerFlow Monitoring
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DecSerFlow Monitoring
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SCIFF-Checker

SCIFF Checker is a ProM plug-in for performing log analysis, in the 
style of LTL-Checker

It uses SCIFF-like rules to classify execution traces

User interface which gives a user-friendly textual rules representation, 
and allows the user to CUSTOMIZE the rule by adding constraints 
between ACTIVITY TYPES, ORIGINATORS, TIMES (bot absolute or 
relative w.r.t. another activity type, originator, time)



ProM
SCIFFChecker

Architecture

62%

38%

Rules GUI +
Customization

Prolog engine
log 

translator

rule 
translator

MXML logs

rules templates

user defined rules





Verifying models

To verify (extended) DecSerFlow models, we can 
exploit the generative variant of the SCIFF proof 
procedure

Intuitively, it checks if a positive expectation has 
been fulfilled and, if this is not the case, 
automatically generates a (partially instantiated) 
happened event



Verifying consistency
Aim: check whether a DecSerFlow model admits 
at least one execution trace

If g-SCIFF is able to find an execution trace, the 
model is consistent

a b

c

1..* E(performed(a), T1) H(performed(a), T1)

E(performed(b), T2) /\ T2 > T1
E(performed(c), T3) /\ T3 > T1

EXP HAP

H(performed(b), T2) /\ T2 > T1

EN(performed(c), _) 

violation



Some experiments...

inconsistent model
SCIFF loops
LTL answers immediately

a b

1..*

a c

1..*

b

1..*

d e

consistent model
SCIFF answers immediately
LTL answers in 1 minute



Discovering dead 
activities
Aim: finding activities which can never be executed (i.e. 
discovering inconsistencies in sub-models)

This task can be reduced to the consistency verification

Basic algorithm:
Declarative Specification and Verification of Service Choreographies · 29

Input: SM , SCIFF formalization of the DecSerFlow model M
Output: D, the set of dead activities
D ← ∅;
foreach Activity A ∈ M do

S′
M ← SM ∪ existence 1(A);

if call(g-SCIFF(S′
M )) fails then

D ← D ∪ A;
end

end
Algorithm 1: Detection of dead activities with g-SCIFF.

one if the composition of the two models admits at least one execution trace, i.e. if
the composition is conflicts free. It is clear that such a verification does not ensure
that the two models completely overlap, nor that if a local model is interoperable
w.r.t. a global model it will correctly comply with any other local model which has
been proven interoperable (see Figure 10). Adopting a proof-theoretic approach
like the one of SCIFF leads to face with this kind of weak interoperability by
simply composing the formalizations of the models under study (i.e., adopting the
“implicit” approach, by joining the knowledge bases of each specific model) and
using g-SCIFF for testing conflict freeness on the composite model.

5.2.3 Mining of DecSerFlow specifications by using SCIFF as an intermediate
language. An important advantage of adopting a logic programming representation
(like SCIFF), relies in the possibility to apply on it all the algorithms and tech-
niques developed within the logic programming setting. More specifically, it makes
possible to apply Inductive Logic Programming (ILP) [Muggleton and De Raedt
1994] techniques for learning declarative models from examples and background
knowledge.

Such a possibility has been concretely exploited by adapting the system ICL
[De Raedt and Van Laer 1995] to the problem of learning SCIFF constraints. In
[Lamma et al. 2007], the authors cast the problem of mining declarative specifica-
tions of processes as a learning from interpretation problem. In particular, they
consider the discriminant problem that is solved by ICL, which starts by consider-
ing a set of positive and negative interpretations and aims to learn a clausal theory
that discriminates the two. In their case they assume to have a set of compliant and
non-compliant process execution traces and find a SCIFF theory that accurately
classifies a new trace of the process as compliant or not.

This learning process has been extended in [Lamma et al. 2007] to learn DecSer-
Flow models. Here, the mapping of DecSerFlow onto SCIFF presented in this work
is exploited in the opposite way: some of the learned Integrity Constraints can be in
fact considered as the SCIFF representation of DecSerFlow formulas, especially if
the language bias of the learning algorithm is opportunely tuned. As a consequence,
SCIFF can be used as an intermediate language for learning DecSerFlow models
starting from a set of execution traces, previously labeled as compliant or not. A
tool called DecMiner is actually being implemented inside the ProM framework to
cover all the phases of such a mining process.

ACM Journal Name, Vol. V, No. N, July 2007.
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DecSerFlow Enactment

Aim: supporting users when executing DecSerFlow 
models, by blocking a-priori the possibility to violate 
constraints

ba c

1..* 0..1

d e

ba c

1..* 0..1

d e

a performed

a c

1..* 0..1

d eb

b performed

c performed

a c

1..* 0..1

d eb



Enactment through SCIFF
Ongoing work

Enactment of extended DecSerflow models

Our idea: exploiting the consistency check with an 
already acquired (partial) history 

1) T ← 0, LOG ← ∅ 

2) for each activity A, suppose to do A at time T: LOG’ ← LOG U {H(A,T)}
verify if the model is consistent by considering LOG’: if NOT, block the possibility to 
do A at time T

3) perform an activity and update LOG, or do nothing

4) T ← T + 1, back to 2) (MANDATORY if there are still pending expectations)



Interoperability
Ongoing work

Interoperability checking between a DecSerFlow 
choreography and a DecSerFlow service

As far as now, only an existential interoperability 
(consistency of the joint model)

Our aim is to extend the notation by considering 
sender/receiver and to study more complex 
notions of interoperability (see [Baldoni et al. 2006, 
Alberti et al. 2006])



SCIFF and LTL
DecSerFlow has an underlying semantics in terms 
of LTL formulas

only “finite” formulas are envisaged (a process 
should EVENTUALLY TERMINATE)

What about the relationship between LTL and 
SCIFF

Is SCIFF able to represent all the different LTL 
formulas?



What we want to prove

There exists a model mapping μ and a 
formula mapping τ s.t.

σ ⊨LTL f ⇒ μ(σ) ⊨SCIFF τ(f)



LTL model: M = (T, <, v)
(T, <) strict total order (flow of time) → in our case, N

v valuation function (to denote validity of propositions)

SCIFF models: execution traces

Model Mapping:

Model Mapping

a, b c c

v(a)={0}, v(b)={0}, v(c)={1,3}

N
0 1 2 3

H(a, 0)
H(b, 0)
H(c, 1)
H(c, 3)

Relationships between LTL and SCIFF

November 18, 2007

1 LTL models

LTL models are triples M = (T, <, v) such that (T, <) is a strict total order (a
flow of time) and v is a map called valuation associating with each variable p a
set v(p) ⊆ T of time points (where p is supposed to be true).

2 Expressiveness of SCIFF

Theorem 2.1 (SCIFF expressiveness). Every LTL formula can be expressed in
SCIFF.

Proof. To prove that every LTL formula can be expressed in SCIFF, we rely
on the result of Fisher et al. [] that every LTL formula can be transformed to
a standard form, called Separated Normal Form (SNF for short). We firstly
present an isomorphic mapping from LTL models to SCIFF ones; then, wre
introduce a transformation from an SNF-formula to SCIFFand finally show that
the given transformation produce equivalent formulae w.r.t. LTL and SCIFF
semantics.

Definition 2.2 (Model mapping). We represent (T, v) with N and map an LTL
model to a SCIFF history by means of the following bijection:

M : (N, v) −→ H (1)
σ = (N, vσ) $−→ HAP = {H(a, T )|T ∈ vσ(a)} (2)

where H is the Herbrand universe built upon H(Constant, Integer) (per Paola:
va bene dire cośı?).

For the sake of clarity, we report here the SNF form introduced in []. LTL
formulae in SNF are a conjunction of the following forms:

start =⇒
∧

c

lc (an initial LTL-clause) (3)

!
(∧

a

ka =⇒ ©
∨

d

ld
)

(a step LTL-clause) (4)

!
(∧

b

kb =⇒ ♦l
)

(a sometime LTL-clause) (5)

1



Formula Mapping

We exploit Fisher’s Separated Normal Form

LTL formula

SNF

SNF TRANSFORMATION

τ
SCIFF rules

Relationships between LTL and SCIFF
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∧

c

lc (an initial LTL-clause) (3)

!
(∧

a

ka =⇒ ©
∨

d

ld
)

(a step LTL-clause) (4)

!
(∧

b

kb =⇒ ♦l
)

(a sometime LTL-clause) (5)

1FISHER, M., DIXON, C., AND PEIM, M. 2001.
CLAUSAL TEMPORAL RESOLUTION.
ACM TRANS. COMPUT. LOGIC 2, 1 (JAN. 2001), 12-56.



Some transformations
SNF SCIFF

⫽a

⫽(start ⇒ y)
⫽(y ⇒ a)
⫽(y ⇒ z)

⫽(z ⇒ Oa)

⫽(z ⇒ Oz)

start(0)→y(0).
y(T)→H(a, T).
y(T)→z(T).
z(T)→H(a, T2) /\ T2 == T + 1.
z(T)→z(T2) /\ T2 == T + 1.

♢a
⫽(start ⇒ y)

⫽(y ⇒ ♢a)
start(0)→y(0).
y(T)→H(a, T2) /\ T2 > T.

⫽(a ⇒ ♢b) ⫽(a ⇒ ♢b) H(a, T)→H(b, T2) /\ T2 > T.



Mapping Example

⫽a

1.
2.
3.
4.
5.

start(0)→y(0).
y(T)→H(a, T).
y(T)→z(T).
z(T)→H(a, T2) /\ T2 == T + 1.
z(T)→z(T2) /\ T2 == T + 1.

a a a a

N
0 1 2 3

start(0)

y(0)

z(0) z(1) z(2) z(3)

1

3

5 5 5 5

H(a, 0) H(a, 1) H(a, 2) H(a, 3)

4 4 4 42

μ



Conclusions
There is a need of declarative languages and tools when developing 
flexible business processes

We propose to adopt
(an extended version of) DecSerFlow for the graphical specification

SCIFF as the underlying formal framework

The mapping of DecSerFlow onto SCIFF is intuitive and automatic

SCIFF can be fruitfully used to monitor services w.r.t. a 
choreographic model, to verify consistency of a DecSerFlow model 
and discovery dead activities, and  even to mine DecSerFlow 
models starting from execution traces

Deeply test the usability of the language

Future works: 
Modeling data-related aspects (e.g. data-driven conditions)

Deeply study the relationships between LTL and SCIFF


