Verification of Declarative
Business Processes




The need of
declarativeness

Different authors claims the importance of adopting declarative
and open paradigms to model interaction/processes

* van der Aalst et al.(BPM / SOA): DecSerFlow/ConDec/CigDec
* Singh et al. (MAS): commitment approaches

% Our work within the SOCS EU Project (MAS) and PRIN projects (together with
UNITO): logic-based approaches to verify interaction

Declarative models
*k capture the essential of interaction abstracting away from implementation details

* focus on the domain problem rather than on a specific (procedural) solution

Open approaches

* participants should be let freely act where not explicitly forbidden

* closeness undermines flexibility

Avoiding to over-specify and over-constrain interaction is of
key importance!

Need of an underlying formal semantics (verification)




Overall schema of the
framework

ki@ Vverification




Overall schema of the
framework

?‘1 DecSerFlow Bl ile (el
P> 2

~

mapping

_/

\

verification

_/




Overall schema of the
framework

?‘1 Dl=eni=igiHle))/ | specification
P>




DecSerFlow

* Graphical declarative language for specifying
service flows

* A DecSerFlow models is described by

*x A set of activities (messages)
* A set of relationships among activities, a la policies / business rules
** Relationships constrain the way activities should be performed

* Semantics of the model as the conjunction of
relationships

* Different applications: CigDec, ConDec, ...




DecSerFlow relationships

* Each relationship has a semantics given in terms
of Linear Temporal Logic

* formulae on “finite traces”, because the choreography should
eventually finish

* Extensible language

* Three families of core relationships

* Existence formulas (similar to UML cardinalities)
** Relation formulas (positive relationships between activities)
** Negation formulas (negated version of relation formulas)




Existence Formulas

% Constraints on the number of activities execution

% Similar to UML cardinalities...

0..N
A absence N A should be executed at most N times
N..*
A existence N |A should be executed at least N times
N
A exactly N A should be executed exactly N times
A B—H B mutual At least one between A and B
— substitution [should be executed




Relation Formulas )

* Constrain the happening of activities w.r.t. other
activities execution

* Three basic temporal orderings: no ordering, after,
before

% Succession formula constructed by combining the
corresponding response and precedence versions

% Number of lines determines how much the
relationship is “strict”




By

elation Formulas g

responded |if A is executed, B should
presence |also be executed —>» | A B

coexistence

B if A is executed, B should be

1T

reSPONSe | oxecuted after A B M

P if B is executed, A should be s s
P executed before B

i

if A is executed, B should be
executed after A

!

response

alternate |B is response of A and there should constraint
response |exists at least one B between two As | |strength

I

chain if A is executed, B should be
response |executed next (immediately after)  /

!

alternate and chain precedence/succession follow straightforward...




7l

egation Formulas

if B is executed, A can never
be executed before B

j._H_ responded |if A is executed, B can never
A B absence |be executed — M
: not coexistence
A B negation |B can never be executed
‘ H response |after A SN M
/

negation
succession

precedence

I

negation response B can never be executed after A

;

negation alternate | There can never be a B between | | constraint
response every two As strength

;

negation chain |B cannot be executed next to A
response (the sequence A B is forbidden)  Z

f

alternate and chain precedence/succession follow straightforward...




Overall schema of the
framework




Mapping DecSerFlow
onto SCIFF

* Very intuitive translation (close to the natural
language description of DecSerFlow)

DecSerFlow SCIFF

Conjunction of constraints Conijunction of rules (IC)

(formulas)
Activity Event
Formula (set of) IC

existence and relation formulas |rules involving positive expectations

absence and negation formulas|rules involving negative expectations




Mapping of existence
formula

0..N
HA, T)) AHA, T2) AT2>T1 A ... AH(A, TN) /A TN>TN-1

A —ENATAT>TN.

N..*

A —EA, HAERA, T2) A T2 > T AL AEA, TN) /A TNSTN-1.

N

A combination of existence N and absence N formulas
I B | |- EA )VEB, ).




Mapping of relation and
negation formulas

* Straightforward mapping, by interpreting the natural language
description

* The mapping of negation formulas is similar, but all E are
substituted by EN

B

H(A, ) — EB, ).

B

1T

H(A, Ta) — E(B, Te) A Ta > Ta. EO-H—V B ||H(A, Ta) = EN(B, Te) A Ts > Ta.

i

H(B, Te) = E(A, TA) A TA< Ts.

I

response and
H(A, TA1)) AHA, TA2) ATaz>Ta = E(B, TB) AT > TAATB < TA2




Overall schema of the
framework

{

rZ
(7]
c
.0
(7]
C
(O]
s’

IéSI

= B

|




Extending branching
formulas

: equivalent ol
type representation S ieaeaton formalization
H (performed(Ai1),Ta)
OR responded_existence A A —E(performed(B), Tg).
B B
JOIN (A1 V A2, B) ~ o H(performed(Az),Ta)
—E(performed(B),Tg).
OR responded_existence B Hiberomned A iy
(A, By V By) —E(performed(B1),TB1)
SPLIT , B2 VE(performed(Bz2),Tg2).

H (performed(A),Ta)
—E(performed(B1),1B).

H (performed(A),Tx)
—E(performed(B2),TR).

B+ B

AND responded_existence

A X

B2 B2

H(performed(Ai1), Tag)
A H(performed(Az), Ta2)
—E(performed(B), Tg).

A1

responded_existence
(A1 N Ag, B)

4

A2




Adding quantitative time
constraints

A performed at time TA
|

validity of T

_ | always —>
{ after —>
L]
_ ! | after(N) —>
when A is | TaeN
performed, __ before >
B should be |
performed e — g
: TAN |
at da tlme--- i I between(N1,N2) |—>
| TA+N1 Ta+N2
—| between(N1,N2) I : >
Ta-N2 TA-Ni i equals(N)
—
equals(N) : TasN
| l >

TA-N

i

—
~

5

>
<

/]

(N1,N2)

;

(N1,N2)

;

IN,N

PRNAL

j

H(A, Tha)

— E(B, TB)
A TB>TAa+ N1
NTB < TAa+ N2




Overall schema of the
framework




DecSerFlow verification

DecSerFlow

Compliance Mining
A A

Enactment

Consistency
checking

Discovery of Interoperability
dead activities veritication

=

Execution traces




Conformance
Verification - Monitoring

* SCIFF proof procedure: verify whether a set of
happened events complies with the specification

* At run-time, it dynamically performs reasoning and halts the
computation waiting for further events

k A-posteriori, by analyzing the entire execution trace of an instance

Declarative BP specification

fulfillment

SOCIETY INFRASTRUCTURE




DecSerFlow Monitoring

[.*

(0,10)
BETE

C

— E(performed(a), Ta).

H(performed(a), Ta)
— E(performed(b), Tb)
NTb>Ta/ATb <Ta + |0.

H(performed(b), Tb)
— EN(performed(c), Tc).
(and viceversa)




DecSerFlow Monitoring

[.*

(0,10)
BETE

C

— E(performed(a), Ta). E(performed(a),T1). | fulfilled with TI=1| fulfilled with T1=1 | fulfilled with T1=1

H(performed(a), Ta)
— E(performed(b), Tb)
NTb>Ta/ATb <Ta + |0.

H(performed(b), Tb)
— EN(performed(c), Tc).
(and viceversa)




DecSerFlow Monitoring

[.*

(0,10)
BETE

C

— E(performed(a), Ta). E(performed(a),T1). | fulfilled with TI=1| fulfilled with T1=1 | fulfilled with T1=1

H(performed(a), Ta)
— E(performed(b), Tb) E(performed(®)T2) fulfilled with T2=8|  VIOLATED | fulfilled with T2=9
ATb>Ta/ATb <Ta + I0. i

H(performed(b), Tb)
— EN(performed(c), Tc).
(and viceversa)




DecSerFlow Monitoring

[.*

(0,10)
BETE

C

— E(performed(a), Ta). E(performed(a),T1). | fulfilled with TI=1| fulfilled with T1=1 | fulfilled with T1=1

H(performed(a), Ta)
— E(performed(b), Tb) E(performed(®)T2) fulfilled with T2=8|  VIOLATED | fulfilled with T2=9
ATb>Ta/ATb <Ta + I0. i

H(performed(b), Tb)
— EN(performed(c), Tc). EN (performed(c), ). fulfilled VIOLATED
(and viceversa)




SCIFF-Checker

* SCIFF Checker is a ProM plug-in for performing log analysis, in the
style of LTL-Checker

* It uses SCIFF-like rules to classify execution traces

* User interface which gives a user-friendly textual rules representation,
and allows the user to CUSTOMIZE the rule by adding constraints

between ACTIVITY TYPES, ORIGINATORS, TIMES (bot absolute or
relative w.r.t. another activity type, originator, time)




Architecture

ProM

SCIFFChecker j

Rules GUI + rules templates

Customization
rule :

translator user defined rules

MXML logs

log ,
L translator Prolog engine




] analysis - SCIFF Checker Plugin =

/ﬁ\ Rules 1 activity & is performed
o [l Existence rules 5 ) o
st Altypeis equal to Firstvisit
¢ [@W simple F-THENrules |
_i_ Activity B after activity A THEN activity B should NOT be performed
-ﬁ' Activity B after N executi f st B.originator is equal to A.originator
= Activity C after activities f and Biype is equal to Second visit
< Activity B or C afier activ -
-i" Activity B hefare activity B Analysis - SCIFF Checker Plugin
=i~ Activity B before N exec 5: | correct | wrong | exception |
- : ] iisamtican =
I Activity C hefore activitie - 11 = L4 : -
- - r 10 (1) =] : z
<" Four-eyes principle 5, 100 (1) _—
o @ User defined rules : 101 (1) I AS| =
- : First visat Dragnasis = av =
: 102 (1) | comee . i
103 (1) -[o1-05 13:4200000 40100 L [
_wrong[264] : =
: 104 (1)
| i DE 105 (1) |
@ ole sy | Lt o
A \D || 107 (1) : st .
L P oot 1 (1) ; 101-05 14:10:00.000 +01:00
= 110 (1)
111 (1) :
112 (1) | - - e
117 (1) “Jot.05 141200000 +01:00
® t[736) @ 264 12(1)
correct[736] ® wrong[264)] 121(1)
122 (1) Lot et Orignasiar = C)
123 (1) campicse I—— s




Veritying models

* To verify (extended) DecSerFlow models, we can
exploit the generative variant of the SCIFF proof
procedure

* Intuitively, it checks if a positive expectation has
been fulfilled and, if this is not the case,
automatically generates a (partially instantiated)
happened event




Veritying consistency

% Aim: check whether a DecSerFlow model admits
at least one execution trace

* If g-SCIFF is able to find an execution trace, the
model is consistent

EXP HAP
E(performed(a), T1) » H(performed(a), T1)

.
.

.
.
.t
.
.
.t
---
.
.
.t
.
‘-

.
P

E(performed(c ) 3 By AT ST 8 I R et

violation ..
EN(performed(c), )<~




Some experiments...

|.*

5
b«

% inconsistent model % consistent model
% SCIFF loops * SCIFF answers immediately
* LTL answers immediately * LTL answers in 1 minute

|.*
g,
[.*
b




Discovering dead
activities

* Aim: finding activities which can never be executed (i.e.
discovering inconsistencies in sub-models)

* This task can be reduced to the consistency verification

* Basic algorithm:

Input: Sy, SCIFF formalization of the DecSerFlow model M
Output: D, the set of dead activities
D « 0;

foreach Activity A € M do

Siy — Sm Uexistence 1(A);

if call(g-SCIFF(S),)) fails then
| D+ DU A,

end
end




Discovering dead
activities

* Aim: finding activities which can never be executed (i.e.
discovering inconsistencies in sub-models)

* This task can be reduced to the consistency verification

* Basic algorithm:

Input: Sy, SCIFF formalization of the DecSerFlow model M
Output: D, the set of dead activities
D « 0;

foreach Activity A € M do

Siy — Sm Uexistence 1(A);

if call(g-SCIFF(S),)) fails then
| D+ DU A,

end
end

inconsistent
©’a’ dead activity




DecSerFlow Enactment

* Aim: supporting users when executing DecSerFlow
models, by blocking a-priori the possibility to violate
constraints

|

a

0.1

C

0.1

C

0.1

C

0.1

a performed

b performed

¢ performed




Enactment through SCIFF

Ongoing work

% Enactment of extended DecSerflow models

* Our idea: exploiting the consistency check with an
already acquired (partial) history

1)|T « 0,LOG - &

N—

2)|for each activity A, suppose to do A at time T: LOG’ « LOG U {H(A,T)}

verify if the model is consistent by considering LOG’: if NOT, block the possibility to
do AattimeT

&

perform an activity and update LOG, or do nothing

4)|T « T+ 1, back to 2) (MANDATORY if there are still pending expectations)




INnteroperabllity

Ongoing work

* Interoperability checking between a DecSerFlow
choreography and a DecSerFlow service

* As far as now, only an existential interoperability
(consistency of the joint model)

* Our aim is to extend the notation by considering
sender/receiver and to study more complex
notions of interoperability (see [Baldoni et al. 2006,
Alberti et al. 2006])




SCIFF and LTL

* DecSerFlow has an underlying semantics in terms
of LTL formulas

* only “finite” formulas are envisaged (a process
should EVENTUALLY TERMINATE)

* What about the relationship between LTL and
SCIFF

* |s SCIFF able to represent all the different LTL
formulas?




What we want to prove

* There exists a model mapping p and a
formula mapping T s.t.

oAnf= H(O‘) =SCIFF T(f)




Model Mapping

* LTL model: M = (T, <, v)
* (T, <) strict total order (flow of time) — in our case, N

* v valuation function (to denote validity of propositions)
* SCIFF models: execution traces

* Model Mapping:
M : (N,v) — H
o= (N,v,)— HAP = {H(a,T)|T € vs(a)}

0 1 5 3
v(a)={0}, v(b)={0}, v(c)={1,3}

S A
N =
S S




Formula Mapping

* We exploit Fisher’s Separated Normal Form

start — /\lC (an initial LTL-clause)
D(/\ ) \/ ld) (a step LTL-clause)
a d
O( /\ i =—01) (a sometime LTL-clause)
b

LTL formula
FISHER, M., DIXON, C., AND PEIM, M. 2001.

‘l'SNF TRANSFORMATION CLAUSAL TEMPORAL RESOLUTION.
ACM TRANS. COMPUT. LOGIC 2, 1 (JAN. 2001), 12-56.

T




Some transformations

SNF SCIFF
[(start = y) start(0)—y(0).
Ly = a) y(T)—H(a, T).
a Ly = 2 y(M)—2z(T).
[l(z = Oa) zM—=H@ T2)AT2==T + 1.
[z = Oz) zM—=2(T2) XT2 ==T+ 1
- [(start = y) start(0)—y(0).
Oy = Oa) y(M—H@ T2)AT2>T.
@a= Ob) (@a= Ob) H(@, T)=Hp, T2)AT2>T.




Mapping Example

I:la a a

.|y(T)=H(a, T).

| y(T)—2z(T).

(z(M—H@, T2 AT2==T + 1.
Az Z(F2)/\ T2==T%-1:

g AN =

start(0)—y(0).




Conclusions

There is a need of declarative languages and tools when developing
flexible business processes

We propose to adopt

* (an extended version of) DecSerFlow for the graphical specification

** SCIFF as the underlying formal framework
The mapping of DecSerFlow onto SCIFF is intuitive and automatic

SCIFF can be fruitfully used to monitor services w.r.t. a
choreographic model, to verify consistency of a DecSerFlow model
and discovery dead activities, and even to mine DecSerFlow
models starting from execution traces

Deeply test the usability of the language
Future works:

* Modeling data-related aspects (e.g. data-driven conditions)
* Deeply study the relationships between LTL and SCIFF




