Verifying Agent Conformance with Protocols: an Automata Based Approach

Laura Giordano 1 and Alberto $\rm Martelli^{2}$

¹Dipartimento di Informatica, Università del Piemonte Orientale, Alessandria ²Dipartimento di Informatica, Università di Torino, Torino

Summary of the paper

- The paper addresses the problem interoperability of software agents in an open environment.
- To guarantee that an agent can correctly interact with other agents according to a given protocol, we define a notion of conformance of agents with protocols.
- We assume that the specification of interaction *protocols* is given in an action theory by means of temporal constraints, in a dynamic temporal logic.
- The verification of conformance of agents with protocols can then be done by making use of automata-based techniques.

Domain description

A protocol is specified by a *domain description*, i.e. a pair (Π, \mathcal{C}) , where

- Π is an action theory containing:
 - action laws
 - causal laws
 - precondition laws
 - initial state
- C is a set of constraints, arbitrary temporal formulas of DLTL.

We can deal with terminating and infinite protocols.

Action laws \mathcal{AL}

Some action laws

 $\Box([sendRequest(C, P)]requested)$ $\Box([sendOffer(P, C)]CC(P, C, accepted, goods))$ $\Box(requested \rightarrow [sendOffer(P, C)]\neg requested)$ $\Box(requested \rightarrow [sendNotAvail(P, C)]\neg requested)$ $\Box([sendAccept(C, P)](accepted \land CC(C, P, goods, paid)))$ $\Box([sendRefuse(C, P)]\neg accepted$ $\Box([sendGoods(P, C)]goods$ $\Box([sendPayment(C, P)]paid)$

Actions are assumed to have *deterministic effects*, and states are complete sets of fluents litterals.

In the *initial state*, all fluents are taken to be false.

Permissions \mathcal{PL}

The permissions to execute communicative actions in each state are represented by *precondition laws*.

The *precondition laws* for the actions of the customer are the following ones:

 $\Box(\neg Offer \rightarrow [sendAccept(C, P)]\bot)$ $\Box(\neg Offer \rightarrow [sendRefuse(C, P)]\bot)$ $\Box(\neg goods \rightarrow [sendPayment(C, P)]\bot).$

The customer may send an accept or refuse only if an offer has been done.

The customer may send a payment for the goods only if he has received the goods.

All other actions are always executable for the customer.

Constraints \mathcal{C}

Constraints in ${\mathcal C}$ are arbitrary temporal formulas of DLTL.

Examples:

 $\neg \diamondsuit < sendOffer + sendNotAvail > \diamondsuit < sendOffer + sendNotAvail > \top$

For each commitment $C(i, j, \alpha)$, C contains the constraint: $\Box(C(i, j, \alpha) \rightarrow \Diamond \alpha)$

All commitments have to be fulfilled.

Given:

- a protocol P with two roles i and j.
- an agent S_i playing the role of i

we want to define a notion of conformance of S_i with the protocol P.

We want to guarantee interoperability:

the interactions of S_i with the other agent S_j conformant with P gives rise to *runs of the protocol* and produces *no deadlock* situations.

Observe that: The two agents share the same actions.

Conformance of agent S_i with protocol P

We can consider an agent S_i to be *conformant* with the protocol:

 S_i is *not forced to send all the messages* that could be sent according to the protocol.

 S_i can receive more messages than those it should actually receive according to the protocol.

To summarize, a conformant agent may have *"less emissions and more reception"*.

We define a notion of conformance of an agent with respect to a protocol by comparing the runs of the agents and the runs of the protocol.

In particular, in this definition, we will not consider the value of fluents at the different worlds in the runs, but only the sequences of actions that can be executed according to the protocol and to the agent.

Informally, an agent S_i conforms with a protocol P if the following conditions hold:

(i) The messages sent from S_i are *correct*: that is, if S_i sends a message m at some stage, then, the role i of the protocol can send message m at that stage.

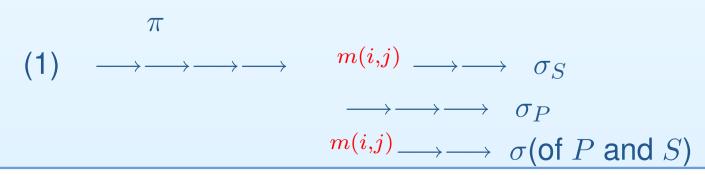
(ii) S_i must receive all the messages which it could receive according to the protocol. This is a *completeness* requirement for S_i .

(iii) If, in a state of the protocol, role i is expected to send a message, in the corresponding state of agent S_i , it must send at least a message.

Condition (iii) is required to avoid deadlock situations when the two agents S_i and S_j interact: they cannot be both waiting to receive a message (*no deadlock*).

An agent S_i is *conformant* with a protocol P if, whenever there are two runs, σ_S of S_i and σ_P of P, with a common prefix π , the following conditions are satisfied:

- (1) if the action $send_{i,j}$ is executed after the prefix π in σ_S , then there exist a run σ common to P and S_i with prefix $\pi send_{i,j}$;
- (2) if the action $send_{j,i}$ is executed after the prefix π in σ_P , then there is a run σ common to P and S_i with prefix $\pi send_{j,i}$;
- (3) if the action $send_{i,j}$ is executed after the prefix π in σ_P , then there is a run σ common to P and S_i with prefix $\pi send'_{i,j}$, with $send'_{i,j}$ possibly different from $send_{i,j}$.



Interoperability

Theorem

Let *P* be a protocol with a nonempty set of runs. Let S_i and S_j be two agents that are conformant with *P*.

The interaction of S and P does not produce deadlock situations and it only produces executions of the protocol P.

Reasoning about protocols using automata

Given a DLTL formula α specifying a protocol P, we can construct a Büchi automaton \mathcal{B}_{α} accepting the infinite words corresponding to the runs of P.

In particular, we have developed an "on-the-fly" algorithm which extends the one for LTL.

Verifying the conformance of S with P

From the specification of the protocol P, we get the nondeterministic automaton \mathcal{M}_P .

The behavior of the agent *S* is given by a *deterministic* Büchi automaton \mathcal{M}_S , whose accepted runs provide all the possible executions of the agent.

We define the *synchronous product* between M_P and M_S

 $\mathcal{M} = \mathcal{M}_P \otimes \mathcal{M}_S$

whose runs are all the runs of S which are also runs of P. \mathcal{M} is a *non-deterministic generalized* Büchi automaton.

Verifying the conformance of S with P

In order to verify the conformance we must be able to consider all together the states of \mathcal{M} which are reachable with the same prefix.

Unfortunately we know that it is not possible to transform \mathcal{M} into an equivalent deterministic Büchi automaton. We proceed as follows:

- We define an automaton \mathcal{M}_{PS} by making use of the classical powerset construction for obtaining a deterministic automaton, starting from \mathcal{M} .
- For verifying the conformance, we refer to the automaton *M*, but also make use of the states of the automaton *M*_{PS} to reason on the set of states of *M* reachable with the same prefix.

Multiparty protocols

We have extended the approach to protocols involving k agents.

Problem: it is not guaranteed that the constraints in the protocol can be enforced directly by the agents S_1, \ldots, S_k . Consider, for instance, a protocol involving four agents A, B, C, D containing the constraint:

 $[m_1(A, B)] < m_2(C, D) > T$

meaning that message m_2 , sent from *C* to *D* has to be executed after m_1 , sent from *A* to *B*. Assume that *A* and *B* do not exchange messages with *C* and *D*. It is clear that this constraint cannot be enforced by agents *A* or *B* alone, as they do not see message m_2 , nor by agents *C* or *D* alone, as they do not see message m_1 .

Multiparty protocols

We specify a k-role protocol P by specifying separately the k roles.

Given a protocol $P = P_1 \land \ldots \land P_k$, its runs are obtained by interleaving all the runs of P_1, \ldots, P_k , synchronizing on common actions.

We have extended the definition of conformance of an agent S_i with a protocol P, by comparing the runs of S_i with those of P_i in the context of P. That is, we define:

 $P[S_i] = P_1 \land \ldots \land P_{i-1} \land S_i \land P_{i+1} \land \ldots \land P_k$

and we compare the runs of $P[S_i]$ with those of P.