Model-Based Diagnosability Analysis for Web Services

Stefano Bocconi¹, Claudia Picardi¹, Xavier Pucel², Daniele Theseider Dupré³ and Louise Travé-Massuyès²

1)Università di Torino, Dipartimento di Informatica
 2)LAAS-CNRS, Université de Toulose
 3)Università del Piemonte Orientale, Dipartimento di Informatica

Talk Outline

- Motivation
- Background knowledge
- Diagnosability approach
- Example
- Conclusions

Motivation

- When a system shows symptoms of malfunctioning, diagnosis determines which faults are the cause, allowing repair actions to be applied
- Diagnosability determines which faults can be determined at runtime
- In order for diagnosis to be effective at runtime, diagnosability analysis should be performed at design time

Web Services

- Composition of several simpler services, composed of activities
- The overall model is not known since single models are visible only to owners
- An activity can raise an exception, whose cause is in a different activity

Model-based diagnosis

- Models are set of constraints over finitevalued variables that define:
 - The dependencies between input, fault mode and output variables of each single activity
 - The resulting workflow
- Consistency-based diagnosis: a diagnosis is an assignment of values to each activity fault mode variables that is consistent with observations

Architecture

Decentralized framework, composed of Local Diagnosers and a Supervisor. Models are private to WS and their LD

Example

h

 $O_4 O_5$

ok

ok

ab

ab

ab

ak

ab

ab

ok

ok

ab

ab

ab

ak

ab

ab

	1 A4 WS2	M_{5}	Y	Z	O_3	O_4	ţ
		ok	ok	ok	ok	ok	ſ
	⁷² ^{9,2} A5 ⁰⁴	ok	ok	ab	$_{ok}$	ok	
رتصاعي		ok	ab	ok	ok	ab	
		ok	ab	ab	ok	ok	
$M_1 O_1$	$M_2 \Lambda$	ab	ok	ok	ok	ok	
ok ok	ok ok	ab	ok	ab	$_{ok}$	ab	ſ
ab ab	ab ab	ab	ab	ok	$_{ok}$	ab	
Activity A_1	Activity A_2	ab	ab	ab	ok	ab	Γ
	$M_4 O_1 O_2 Y Z$	ok	ok	ok	ab	ok	
	ok ok ok ok ok	$_{ok}$	ok	ab	ab	ok	
$M_3 X O_2 O_3$	ok ab ok ok ab	ok	ab	ok	ab	ab	
ok ok ok ok	ab ok ok ab ok	ok	ab	ab	ab	ok	Γ
ok ab ab ab	ab ab ok ab ab	ab	ok	ok	ab	ok	
$ab \ ok \ ab \ ab$	ok ok ab ok ok	ab	ok	ab	ab	ab	
ab ab ok ab	ok ab ab ok ab	ab	ab	ok	ab	ab	
Activity A_3	ab ok ab ab ok	ab	ab	ab	ab	ab	
	ab ab ab ab ab		Ac	tiv	ity .	A_5	
	Activity A_4						

Data flow

- INPUT from Supervisor to LD: set of hypotheses projected over the LD local variables
- LD calculates with an operation called Extend (Ext) the set of hypotheses consistent with its model.
- OUTPUT from LD to Supervisor: the set of hypotheses projected over fault mode, observable and interface variables.

General diagnosability

- Consequences of faults on observables (calculated with Ext)
- Fault mode: complete state of all the activities in the composite WS
 - Each activity can be either ok or ab 2ⁿ fault modes for n activities
- Full diagnosability: each fault mode provides a unique pattern of observables
 - comparisons to be made:

$$2^{n-1}(2^n-1)$$

Our approach to diagnosability

- Discriminability: Two fault modes are discriminable if their patterns of observables (calculated with Ext) are disjoint.
- Partial fault mode (pfm): an assignment to some of the fault mode variables (3ⁿ possible pfm)
- Incremental approach using *pfm*s
 - □ Each step *i* reuses info calculated at step *i*-1
 - □ Full analysis can be completed before step *n*
 - Worst case comparisons at step *i*:

$$2^{i-1}(2^i-1)\frac{n!}{(n-i)!i!}$$

Pfms: definitions

- rank(pfm): number of assigned variables in pfm
- domain(pfm): set of assigned variables in pfm
- alternative pfms: same domain, at least one variable different
- pfm_1 is a refinement of pfm_2 if
 - $rank(pfm_1) > rank(pfm_2)$ and
 - pfm_1 projected on domain(pfm_2) is equal to pfm_2

Pfms: properties

- Property 1: Ext needs only to be calculated on *pfm*s of rank 1, since Ext(*pfm*₁∧*pfm*₂) = Ext(*pfm*₁)∧ Ext(*pfm*₂)
- Property 2: If *pfm*₁ is discriminable from *pfm*₂
 , all their refinements are discriminable
- Property 3: If at rank $k pfm_1$ and pfm_2 are not discriminable and $Ext(pfm_1)$, $Ext(pfm_2)$ do not contain m, then also $pfm_1 \wedge m$ is not discriminable from $pfm_2 \wedge m$

Algorithm

- Calculate **Ext**(pfm_i), i=1, n (property 1).
- Perform discriminability analysis rank by rank, by comparing each couple of alternative *pfm*s. At rank 1 these are {(*m_i=ok*,*m_i=ab*),i=1,n}
- Each refinement of discriminable *pfm*s at rank *i* does not need to be check at higher ranks (property 2).
- Each refinement of non-discriminable *pfm*s at rank *i* does not need to be check at higher ranks when property 3 holds

Example

h

	01 A4 WS2	M_5	Y	Z	O_3	O_4	O_5
		ok	ok	ok	ok	ok	ok
		ok	ok	ab	ok	ok	ok
المحاصات		ok	ab	ok	ok	ab	ab
		ok	ab	ab	$_{ok}$	ok	ab
$M_1 O_1$	$M_2 = A$	ab	ok	ok	ok	ok	ab
ok ok	ok = ok	ab	ok	ab	ok	ab	ok
ab = ab	ab ab	ab	ab	ok	ok	ab	ab
Activity A_1	Activity A_2	ab	ab	ab	ok	ab	ab
	$M_4 O_1 O_2 Y Z$	ok	ok	ok	ab	ok	ok
	ok ok ok ok ok	$_{ok}$	σk	ab	ab	ok	ok
$M_3 X O_2 O_3$	ok ab ok ok ab	ok	ab	ok	ab	ab	ab
ok ok ok ok	ab ok ok ab ok	ok	ab	ab	ab	ok	ab
ok ab ab ab	ab ab ok ab ab	ab	ok	ok	ab	ok	ab
$ab \ ok \ ab \ ab$	ok ok ab ok ok	ab	ok	ab	ab	ab	ok
ab ab ok ab	ok ab ab ok ab	ab	ab	ok	ab	ab	ab
Activity A_3	ab ok ab ab ok	ab	ab	ab	ab	ab	ab
	ab ab ab ab ab ab		Ac	tiv	ity .	A_5	
	Activity A_4						

Example										
nfm	mode vars				observable vars					
pjm	M_1	M_2	M_3	M_4	M_5	O_1	O_2	O_3	O_4	O_5
	ok	*	*	ok	ok	ok	*	*	ok	ok
$m_1 = ok$	ok	*	*	ok	ab	ok	*	*	ok	ab
	ok	*	*	ab	*	ok	*	*	ab	ab
	ab	*	*	ok	ok	ab	*	*	ok	ok
m _ ab	ab	*	*	ok	ab	ab	*	*	ab	ok
$m_1 - u_0$	ab	*	*	ab	ok	ab	*	*	ok	ab
	ab	*	*	ab	ab	ab	*	*	ab	ab
$m_{o} - ok$	*	ok	ok	*	*	*	ok	ok	*	*
$m_2 - 0\kappa$	*	ok	ab	*	*	*	ab	ab	*	*
$m_2 - ab$	*	ab	ok	*	*	*	ab	ab	*	*
$m_2 = a o$	*	ab	ab	*	*	*	ok	ab	*	*

Number of comparisons

Rank	Full	Incremental -worst case	Incremental -example
1		5	5
2		60	10
3		280	3
4		600	-
5	496	496	-

Conclusions

- Framework for distributed diagnosability, when no overall model is available
- Incremental approach using partial assignments
- Analysis provides the same information as full diagnosability, likely requiring less operations
- Designer can stop at arbitrary rank if not interested in full diagnosability