AI*IA 2007 & WOA 2007

Curricula Modeling and Checking

M. Baldoni, C. Baroglio, G. Berio, and E. Marengo

Dipartimento di Informatica – Università degli Studi di Torino c.so Svizzera, 185, Torino (Italy)

Automatic composition of learning resources

- Greater and greater availability of learning resources through the web
- Learning resources must be combined for allowing users to acquire some knowledge

- Compositions should be verified to check:
 - Achievement of the user's learning goal
 - Compliance to the course-design goals
 - Competency gaps

Verifications

- Competency gaps: whenever I use a learning resource, all the knowledge that is necessary to understand its content is available (either from the beginning or because supplied by a previous resource)
- Learning goal achievement: a curriculum is designed by a student with the aim of gaining some knowledge
- Course-design goal achievement: the curriculum satisfies the specification made at design time

Aim of the work: to support the automatic verification of resource organizations, by checking competency gaps, the achievement of the user's learning goal, and the satisfaction of the course design goals

Competences and Resources

- In this perspective we distinguish between competencies and resources
 - Competency: a piece of knowledge, e.g. knowledge that is supplied or that is required to attend a curriculum
 - **Resource**: an item that either requires or supplies competencies, e.g. learning materials or courses

Resources/courses as actions

- Learning resources are modeled in an action-based way:
 - a resource has a precondition and an effect
 - precondition: a set of competences that are considered as necessary to understand the topics taught by means of the resource
 - effect: a set of competences that are supplied by the resource

PRECONDITION p2 R EFFECT

Curricula

 Intuitively, a curriculum is a sequence of resources aimed at pursueing a learning goal (i.e. to acquire specific competencies)

GOAL

f4

f5

f8

Soundness of a curriculum

- A curriculum is sound if it shows no competency gap and it allows the achievement of the user's learning goal
- By reasoning on resources as actions, it is easy to perform these verifications on a given curriculum
- Distinguishing between competencies and resources supports the openness of systems

Soundness of a curriculum

- A curriculum is sound if it shows no competency gap and it allows the achievement of the user's learning goal
- By reasoning on resources as actions, it is easy to perform these verifications on a given curriculum

 Distinguishing between competencies and resources the openness of systems

Soundness of a curriculum

- A curriculum is sound if it shows no *competency gap* and it allows the achievement of the *user's learning goal*
- By reasoning on resources as actions, it is easy to perform these verifications on a given curriculum

Distinguishing between competencies and resources supports

the openness of systems

GOAL

Compliance to course design

- Curricula should match the "design document" specified by the institution which offers the courses/resources
- E.g. in previous work prolog-like clauses used to capture the structure of a curriculum, based on competencies

Compliance to course design

- In open domains, resources are added, modified, ...
- Specification of the design document: generative definition of allowed curricula
- Prescriptive
 solution! Not
 adequate: whatever
 is not specifically
 foreseen is illegal

Compliance to course design

- The idea explored in this work is to define only the necessary constraints
- Inspired by Singh's social approach for representing interaction protocols
- Curricula model: it specifies the properties that the curricula (proposed either by the students of some organization or by the organization itself) should satisfy
- Advantage: it is not necessary to force the specification of all the legal sequences of courses, avoiding overspecification

Constraint vs. procedural representation

- Goal = {A, B, C}
- Possible solutions:A B C, A C B
- Goal = {A, B, E}
- Possible solutions:E A B, A E B, A B E
- A procedural representation should include all the sequences with a nondeterministic choice

DCML

- DCML (Declarative Curricula Model Language) is a graphical language grounded in *linear temporal logic* (LTL)
- It supplies primitives for representing competences (competencies plus proficiency level) and various kinds of constraints
- The graphical notation facilitates the designer, who does not need to be an expert of temporal logic notations
- The logical grounding enables automatic forms of verification

Curricula Modelling and Checking, Al*IA 2007, Roma M. Baldoni, C. Baroglio, G. Berio, and E. Marengo

DCML at a glance

Competences for University courses of a Computer Science curriculum and their dependencies

Curricula Modelling and Checking, Al*IA 2007, Roma M. Baldoni, C. Baroglio, G. Berio, and E. Marengo

DCML at a glance

- How to represent curricula?
- We need a representation that includes:
 - Resources
 - Decision points
 - Alternatives
 - Mandatory and non-mandatory resources
- We can represent curricula by means of UML activity diagrams

 How to clearly distinguish between mandatory and optional parts of the curricula?

Introducing and reorganizing curses in swim-lines

- How to clearly distinguish between mandatory and optional parts of the curricula?
- Introducing and reorganizing curses in swim-lines

- How to represent how courses are distributed along the academic year?
- Introducing milestone to represent the time division

 How to represent how courses are distributed along the academic year?

• Introducing milestone to represent time division Term 3

Verification of compliance

- Checking if a curriculum satisfies the course design goals
- In other words, does it satisfy the constraints imposed by the curricula model?

Using SPIN to verify compliance

- Verifications are performed by means of the model checker SPIN
 - it allows to verify if an execution path satisfies an LTL formula: curriculum => execution path, curricula model
 => LTL formula
 - it returns a counterexample in case the formula is not satisfied: very important for the designer!
- DCML -> LTL formula
- Activity diagram -> Promela program

UML activity diagrams -> Promela

- The literature offers methods of translation whose aim is debugging. We cannot use them directly
- Our translation:
 - competence -> integer variable
 - CurriculumVerification: list of all the periods in which are divided the curricula
 - For each milestone:
 - First all the preconditions are checked
 - Then the effects are added
 - At the end the Learning Goal is checked

```
proctype CurriculumVerification()
{
    milestone_1();
    milestone_2();
    milestone_3();
    LearningGoal();
```


proctype CurriculumVerification()
{
 milestone_1();
 milestone_2();
 milestone_3();
 LearningGoal();
}

- Check preconditions of all courses that start in this milestone
- Add the effects of all the courses that end in this

Preconditions

```
Inline milestone 1() {
 preconditions course Java I();
 preconditions_course_Logics();
 ::(path == 1 && (Transaction <1
       || Data recovery < 1)) ->
     preconditions course Introduction to DB();
 ::(path == 1 && Transaction >=1
   && Data recovery >= 1) -> skip;
 ::else -> skip;
 effects course Java I();
 effects course Logics();
 ::(path == 1 && (Transaction <1
       || Data recovery < 1)) ->
            effects_course_Introduction_to_DB();
 ::(path == 1 && Transaction >=1
   && Data recovery >= 1) -> skip;
 ::else -> skip;
```

Mandatory courses


```
Inline milestone 1() {
 preconditions course Java I();
  preconditions course Logics();
 ::(path == 1 && (Transaction <1
       || Data recovery < 1)) ->
     preconditions_course_Introduction_to_DB();
  ::(path == 1 && Transaction >=1
  && Data recovery >= 1) -> skip;
 ::else -> skip;
 effects_course_Java_I();
 effects course Logics();
 ::(path == 1 && (Transaction <1
       || Data recovery < 1)) ->
            effects course Introduction to DB();
 ::(path == 1 && Transaction >=1
   && Data recovery >= 1) -> skip;
 ::else -> skip;
```

Additional courses


```
Inline milestone 1() {
 preconditions course Java I();
 preconditions course Logics();
  ::(path == 1 && (Transaction <1
       || Data recovery < 1)) ->
 preconditions course Introduction to DB();
  ::(path == 1 && Transaction >=1
   && Data recovery >= 1) -> skip;
 ::else -> skip;
 effects course Java I();
 effects course Logics();
 ::(path == 1 && (Transaction <1
       || Data recovery < 1)) ->
   effects_course_Introduction_to_DB();
 ::(path == 1 && Transaction >=1
   && Data recovery >= 1) -> skip;
 ::else -> skip;
```

Additional courses


```
Inline milestone 1() {
 preconditions course Java I();
 preconditions course Logics();
 ::(path == 1 && (Transaction <1
       || Data recovery < 1)) ->
     preconditions course Introduction to DB();
 ::(path == 1 && Transaction >=1
  && Data recovery >= 1) -> skip;
 ::else -> skip;
 fi
 effects course Java I();
 effects course Logics();
  ::(path == 1 && (Transaction <1
       || Data recovery < 1)) ->
   effects course Introduction to DB();
  ::(path == 1 && Transaction >=1
   && Data recovery >= 1) -> skip;
 ::else -> skip;
```

Additional courses


```
Inline milestone 1() {
 preconditions course Java I();
 preconditions course Logics();
 ::(path == 1 && (Transaction <1
       || Data recovery < 1)) ->
     preconditions course Introduction to DB();
 :: (path == 1 && Transaction >=1
  && Data recovery >= 1) -> skip;
  ::else -> skip;
 effects_course_Java_I();
 effects course Logics();
 ::(path == 1 && (Transaction <1
       || Data recovery < 1)) ->
            effects course Introduction to DB();
 ::(path == 1 && Transaction >=1
   && Data recovery >= 1) -> skip;
 ::else -> skip;
```

Soundness 1

 Competence gap: verification by SPIN logical assertions, if no assertion is violated, the curricula given by the translation of an activity diagram show no competence gap

Soundness 1

 Competence gap: verification by SPIN logical assertions, if no assertion is violated, the curricula given by the translation of an activity diagram show no competence gap

```
inline preconditions_course_lab_of_web_services()
{ assert(N_tier_architectures >= 4 && sql >= 2); }

EFFECTS inline effects_course_lab_of_web_services()
{ SetCompetenceState(jsp, 4); [...]
SetCompetenceState(markup_language, 5); }
```

Soundness 2

 Goal achievement: the learning goal is represented as an assertion that must be verified at the end of every execution

Soundness 2

 Goal achievement: the learning goal is represented as an assertion that must be verified at the end of every execution

```
proctype CurriculumVerification()
{
    milestone_1();
    milestone_2();
    milestone_3();
    LearningGoal();
}

inline LearningGoal()
{ assert(advanced_java_programming>=5 && N_tier_architectures >= 4 && relational_algebra>=2 && ER_language>=2); }
```


(html,2) before (jsp,4) (DBMS,3) before (jdbc,1) Automatic translation of the DCML diagram into an intermediate language

(html,2) before (jsp,4) (DBMS,3) before (jdbc,1)

- Automatic translation of the DCML diagram into an intermediate language
- Automatic translation from the intermediate

 $\begin{array}{c} \neg_{(k_1,l_1)} \cup_{(k_2,l_2)} \text{language into LTL} \\ & \Diamond_{(k_2,l_2)} \supseteq_{(k_3,l_3)} \end{array}$ formula

$$\neg (k_5, l_5) \qquad \Diamond(k_2, l_2)$$

course1 then course2
decision_point
parallel(course3, course4)

 Automatic translation of the UML activity diagram into an intermediate language

course1 then course2 decision point parallel(course3, course4)

- Automatic translation of the UML activity diagram into an intermediate language
- Automatic translation of the curricula from the intermediate language into a Promela program

Conclusions

- Inspired by work on medical guidelines (GLARE)
- The importance of the concept of "competence" and the need to regulate the process of acquisition of competences is witnessed by a growing attention not only in the area of Elearning
- For example, in *corporations*, **competence management** concerns the way in which the competences of a group of individuals are organized and controlled
- We are currently working on an integration of this proposal with the CRAI competence model (Harzallah, Berio & al.)

Thanks!

Curricula model and temporal constraints

- Temporal Constraints:
 - Data Structures before Programming
 - Programming before
 Operating Systems

Competences and Resources

- The importance of the concept of "competence" and the need to regulate the process of acquisition of competences is witnessed by a growing attention not only in the area of E-learning
- For example, in corporations, competence
 <u>management</u> concerns the way in which the
 competences of a group of individuals are organized
 and controlled

Goal: to organize resources so as to supply

competences in the best possible way

Two levels of representation

- Hence, two levels of representation are required:
 - Dependencies between competences have a temporal nature; they define model for the desired solution
 - 2) Constraints on resources can be various, they depend on the specific kind of resource and of application domain
- Representation:
 - 1) What to use?
 - 2) Workflows, activity diagrams

DCML

Competences and constraints

